Sample Sessions

Thisfilecontains explained input and output for some EULER sessions. Each one is dedicated to
the solution of a specific problem. The following topics are available.

Evaluating afunction
Using expression strings
Complex Functions

A differential equation
Bezier curve and surface
Fast Fourier transform
Solving linear systems
Exact evaluation

Interval methods

Evaluating a Function

The following session has been |eft asit was (almost). It contains all the errors and corrections.

This is EULER, Version X XX

Type hel p(Return) for help.
Ent er conmand)

Loading utilities, Version X XX
Thisis the welcome message of EULER.

>sin(2)/2
0. 4546487

We wish to study the function sin(t)/t in the neighborhood of 0. Thus we need some more digits

>| ongf r omat
Vari abl e | ongfromat not defi ned!
error in:
| ongf r omat
N
>| ongf or mat
10. 000000000000 5. 000000000000

A typical typo. Simply press cursor up and correct it. Format was set to 10 digits width and 5 digits
after decimal point. The new format gives 12 digits after decimal point. Other options are
goodformat and expformat.

>si n(0. 0001) /0. 0001
0. 999999998333

>si n(0.0001)/0. 0001- 1
-0. 000000001667

We conclude that sin(t)/t convergesto 1. Let us see a picture of that function, using a function table.
>t =-10: 0. 01: 10;

>s=sin(t)/t;
>xplot(t,s);

>title("sin(t)/t");

t isavector of 1000 values from -10 to 10. sisthe function evaluated at these points. Remember
that EULER evaluates al function on a vector element by element. The result is the following
picture

ain(EyfE

/)
[

IZNRVIEEEGN
NERNAREAY

By the way the above plot could have been generated with

>fplot("sin(x)/x",-10,10);

more easily. There are many functionsin EULER allowing an expression or afunction name as
input.

Of course, we know that we can expand sin(t)/t to a power series around 0. Let us add a plot of the
first 3 terms of this series. This shows, how a plot can be added to an existing one. It al'so shows
that truncation of large values is done automatically, if the plot scaleis already set.

>hol d on; plot(t,1-t~2/fak(3)+t~4/fak(5)); hold off;

The result is the following picture

| ainf(EyfE I|

LN
L

IR
LN LIS

Using Expressions

Many functions of EULER can use expressions as input. This makesit easy for the casual user to
get results.

E.g., if we wanting to solve the equation cos(x)=x, we can use

>| ongf or mat ;
>t=1; root("cos(t)-t",t)
0. 7390851332152

In the case of the function root, the variable name may be arbitrary. There could also be other
variables, which must be global variables. t is set to the computed value. The second parameter
must be the name of the variable.

root is aspecial function for command line use. However, there are other methods to solve
equations. The bisection methods needs two points, where the function has opposite sign.

>hi sect ("cos(x)-x",0,1)
0. 7390851332157

This time the variable must be named x. We must provide the two points of opposite sign to bisect.
Other methods are the faster secant method and the Newton method, which needs the derivative.

>secant ("cos(x)-x",0,1)
0. 7390851332152

>newt on("cos(x)-x","-sin(x)-1",0)
0. 7390851332152

In the case of the cos function, iterating the function converges to the fixed point.

>iterate("cos(x)", 1)
0. 7390851332143
>niterate("cos(x)", 1, 10)
0. 5403023058681
0. 8575532158464

. 6542897904978
. 7934803587426
. 7013687736228
7639596829007
. 7221024250267
. 7504177617638
. 7314040424225
. 7442373549006

We can view the history with niterate. The convergenceisvery slow.

We remark, that expressions can also be used for aquick draw of afunction.

>fpl ot ("x"3-x",-1,1);
>f 3dpl ot (" (x"3-x*y)/2");

Even adifferential equation can be solved thisway! Try
>x=l i nspace(0, 2*pi, 100); y=heun("sin(x)*y",x,1); xplot(x,y);

(Another implemented solver is the Runge-Kutta method, optionally with adaptive step size). Or an
integration can be computed using

>ronber g("exp(-x"2)/sqgrt(pi)",-10, 10)
1

1 isthe exact value of thisintegral from -infinity to +infinity.

Another example is the minimum of afunction, which can be computed with
>fmn("x"3-x",0, 1)
0.57735

>x=1; root("3*x"2-1",Xx)
0.57735

Complex functions

We wish to visualize a complex function.

>phi =l i nspace(0, 2*pi, 500);
>z=exp(li *phi);

Thus z are points on the unit circle. In fact, we just went once around it. Let us see, if the pointin z
are indeed on the unit circle.

>max(abs(z)), mn(abs(z)),
1. 0000000
1. 0000000
They are! Now let us see, how these points are mapped under the exp function.

>w=exp(z) ;

>xpl ot (re(w,imw);

N

This plot connects the points re(w[i]) and im(w[i]) by lines. By the way, we could have used
xplot(w) simply for the same purpose. We see, that the plot is distorted. Thus we choose a more
appropriate plot region.

S »

>setplot(0,3,-1.5,1.5);

>xpl ot (re(w,imw);
>title("exp(z) for |z|=1");

We compare the picture with the first three terms of the complex power series of exp(z).

>Wl=1+z+z"2/ 2;
>hol d on; color(2); plot(re(wl),imwl)); hold off;

Finally, we get the following picture

waplz) foc |z|-1

1 AR

N

1 2

This visualizes, how a parametric plot of the mapped unit circle looks like.

To make aplot of the exp function near the unit circle, we need to define agrid of values. First of
all, we establish the r and phi values

>r=(-1:0.1:1)’; phi=linspace(0, 2*pi, 60);
>z=r +1i *phi ; w=exp(z);
>cpl ot (w); xplot();

4
it
3
<

oS

2
n
S5
oS

]
)
'
-
o
=

2

We defined two matrices of x and y values of grid points (r,phi) and mapped them with exp. We
made them visible with cplot. Note, that cplot does not add axis ticks. We had to do this ourselves.

We can now see, how exp distorts these values, using

>cpl ot (exp(w)); xplot();

1o e

.

peuB L

PR
ISR

T
L
SR
AR Sun
LT
S/

-10

It g

o
[t

A Differential Equation

We take the second order differential equation y’’ =2cos(x)-y. Thereis a numerical solver
implemented in EULER, which uses the method of Heun.

>hel p heun

function heun (ffunction,t,y0)

y=heun("f",t,y0,...) solves the differential equation y' =f(t,y).
f(t,y,...) must be a function

y0 is the starting val ue.

To use it, we need to write a function, which implements f(t,y). It has two parameters, t and y. y can
be avector. In our case, we solve the equivalent equation y1’' =2cos(x)-y2, y2' =y1.

>function f(t,y)
$return [2*cos(t)-y[2],y[1]];
$endf uncti on

This function was simply entered interactively. Now lets compute a solution at discrete pointst of
theinitial value problem y(0)=0, y’ (0)=0.

>t =l i nspace(0, 2*pi, 100);
>s=heun("f",t,[0,0]);

>xplot(t,s);

Stitle("y '=2*cos(x)-y, plot of y,y'");

y''-hcoa(sb-y, plob of gyt

Zan
N/
INERNGY

1 2 E L] 3 [

Thisisaplot of the solution and its first derivative. Since the exact solution is known, we can
compute the maximal error.

>max(s[2]-t*sin(t))
0. 00022

Next we try to solve the boundary value problem y(0)=0, y(1)=1. We use the shooting method. So
we write a function, which computes y(1) in dependence of y’ (0).

>function g(a)

$t =l i nspace(0, 1, 100);
$s=heun("f",t,[a, 0]);
$return s[2,cols(s)];
$endf unction

Then
>g(0)

0.84147
>g(1)

1. 68294

So y’ (0) must be chosen between 0 and 1. We use an implemented root finder, the secant method.
We seek the root of the following function.

>function h(a)
$return g(a)-1
$endf uncti on

The secant method work like this.

>hel p secant
function secant (ffunction, a,b)
secant ("f",a,b,...) uses the secant nethod to find a root of f in [a,b]

So we find the solution with

>yl=secant ("h",-1,0)
0.18840

Indeed

>g(y1)
1. 00000

Lets have alook at this solution.

>t =l i nspace(0, 2*pi, 100);
>s=heun("f",t,[y1,0]);

>xplot(t,s[2]);

>title("y '=2*cos(x)-y, y[0]=0, y[1]=1");

' t=2Meaaixb -y, ¢l01-0, ¢]1]-1

N
L

Bezier curve and surface

We compute the Bezier polynomialsfirst.

>t =0: 0. 01: 1;
>n=(0:5)";

>S=hin(5,n)* t"n* (1-t)(5-n);

We need to explain this. By the rules for operands or functions with two parameters, S has as many
rows as n, and as many columns ast. The expression is evaluated correctly using corresponding
values.

>si ze(S)

6. 0000000 101. 0000000
>xplot(t,S);
>title("The Bezier polynom als");

Ihe Eexzicc polynomials

SIS

o. LA 0.8 o.2 1

Now we generate a Bezier polynomial to the points 1,3,4,4,3,1. The x-coordinates are simply
equally spaced from O to 1.

Eeriec polynomial bo a geid

AT

This has been done with the following commands.

>v=[1, 3,4,4,3,1]; xplot(linspace(0,1,5),vV);
>hold on; color(2); plot(t,v.S); color(1l); hold off;
>title("Bezier polynonial to a grid");

We can also get a surface. We use random z-coordinates and an equally spaced grid for x and y.
However, the graph looks clearer, if we decrease the number of pointsint alittle bit. To redefine
al of the above, we can ssimply recall the commands (or paste them).

>t =0: 0. 1: 1;

>n=(0:5)";

>S=bi n(5, n) *t n*(1-t)~(5-n);
>Z=r andomn(6, 6) ;
>triangles(1l); nmesh(S .Z. S);
>title("A Random Surface");

To view the surface from another view, we must define the x and y coordinates properly and call
framedsolid with the scaling parameter of 1. | had to play with the view parameters to produce a
nice look. triangles(1) makes 3D plots look better. This can be done with the following code.

>view(3,1.5,0.5,0.5);
>franedsolid(t’,t,S .2 S, 1);
>title("Another view');

The Fast Fourier Transform

What it the fastest way to compute sum z*n/n*2 for all |z|=1? Thisis a case for the Fast Fourier

Transform (FFT). So

>a=1/ (1: 1024) *2;

>w=fft(a);

>xplot(w); title("sumz”n/n"2, |z|=1");

resultsin aplot of these values.

aum tafatd, |z|-1

. S

Also

>l ongformat; w 1]

1.643957981030+ 0. 000000000000
>pi "2/ 6

1.644934066848

w[1] issum 1/n"2 and thus about equal to pi~2/6.

Letstake asimpler example.

>z=exp(2*1i *pi/8); z"8
1. 00000+ -2.45030e-16

z isthe 8-th unit root. Now evaluate 1+x+2*x"2 for x=1,z,2"2,...,z*7 simultaneously.

>w=pol yval ([1,1,2,0,0,0,0,0],z7(0:7))
Colum 1 to 2:

4. 00000+ 0. 00000i 1.70711+ 2.70711
Colum 3 to 4:

- 1. 00000+ 1. 00000i 0. 29289+ -1.29289
Colum 5 to 6:

2. 00000+ - 3. 67545e- 16i 0. 29289+ 1.29289
Colum 7 to 8:

- 1. 00000+ - 1. 00000i 1.70711+ -2.70711

>fft([1,1,2,0,0,0,0,0])
Colum 1 to 2:
4. 00000+ 0. 00000i 1.70711+ 2.70711

Colum 3 to 4:

- 1. 00000+ 1. 00000i 0. 29289+ -1.29289

Colum 5 to 6:
2. 00000+ 1. 22515e- 16i 0. 29289+ 1.29289

Colum 7 to 8:
- 1. 00000+ - 1. 00000i 1.70711+ -2.70711

Thisis exactly the same. FFT doesthe inverse. So ifft(w) yields[1,1,2,0,0,0,0,0].

What has this to do with trigonometric sums? Let us start with a trigonometric sum and evaluate it

at equidistant points.

>d=2*pi / 16; t=0:d:2*pi -d;

>ifft(s)
Colum 1 to 2:

s=1+sin(t)+2*cos(t) +3*si n(5*t);

1. 00000+ 0. 00000i 1. 00000+ - 0. 50000
Colum 3 to 4:
-5.18102e- 16+ -1.12612e-15i 2.52999e- 16+ - 8.88178e-16
Colum 5 to 6:
8. 02039%e- 16+ -2.52673e-16i 6. 52961e- 17+ -1. 50000
Colum 7 to 8:
8.07853e- 16+ 4.28197e- 16i 5.55112e-17+ 1.08247e-15
Col um 9 to 10:
-8.32667e- 16+ -6.12574e-17i -1.11022e- 16+ -9.99201e- 16
Colum 11 to 12:
8. 20540e- 16+ -4,.58826e- 16i - 8. 29415e- 16+ 1. 50000
Col um 13 to 14:
8. 63296e- 16+ 1.91416e- 16i 6. 02979%e- 16+ 7.77156e- 16
Colum 15 to 16:
-4, 44158e- 16+ 1. 09549e- 15i 1. 00000+ 0. 50000

The relevant coefficients are clearly visible. Thus a[0] is 1, a[16]+a[1] is2 and (a[16]-a[1])/i is 1,
(a[12]-4[6])/1 is 3. Thisistaking the real part of the polynomial.

FFT isusually used to make afrequency decomposition of asignal.

>t =l i nspace(0, 2*pi, 1023); size(t)
1. 00000 1024. 00000

>s=si n(50*t) +si n(100*t) *2;

>s=s+nornmal (si ze(s));

>xpl ot (s);

We have asignal composed of frequencies 50 and 100. To it, we added noise in the form of a
normal distributed random variable. In the plot, the signal isamost invisible.

The signal looks like this.

[T

200 4«00 a00 2o0o iooo

Thisisrealy anoisy signal.
>xpl ot (abs(fft(s)));

However, the discrete fourier transform clearly shows the relevant frequencies.

looo0

400

200

LKA ottt bonlb A

200 400 600 zono looo0

Solving Linear Systems

We try to solve a 20x20 linear system, using the interval Gauss method, starting with an interval
matrix A and an interval vector b, we solve A.x=b. |.e., we compute an inclusion of all possible
solutions of A1.x=bl, where A1, bl have all componentsin A, b respectively.

>A=~r andon(20, 20) ~; b=~normal (20, 1) ~; x=A\Db,

~- 8. 82886, - 8. 31189~
~6. 75804, 6. 86954~

~3. 88369, 4. 21000~

~1. 77887, 1. 93779~
~-1.10686, - 1. 06680~
~-1.63162, - 1. 49419~
~-12. 37560, - 12. 36436~
~6. 57582, 6. 58060~

~- 3. 99866, - 3. 98221~
~12. 02685, 12. 03148~
~10. 92949, 10. 93122~
~7.32614, 7. 32686~

~3. 32568, 3. 32682~
~-5.00561, - 5. 00428~
~- 0. 58250, - 0. 58215~
~-7.73372,-7.73332~
~- 3. 28384, - 3. 28366~
~-0.49704, - 0. 49702~
~-2.53221, -2.53217~
~- 3. 84874, - 3. 84874~

>max(di aneter(x)’),
0.51697

The computed vector x isan inclusion of the correct solution of A.x=b. However, we are not
satisfied with thisinclusion. To improve it, we use an approximate solution X. Then we compute the
residuum r=A.x-b and solve A.y=r in an interval manner. We then set x=x-r. Thisyieldsan
inclusion of the correct solution, which is at most 0.00002 wide.

>x=m ddl e(A)\ m ddl e(b); x=x-A\residuun(A, x, b);
>max(di anmeter(x)’),
0. 00002
>x[1],
~-8.57038, - 8. 57036~

To do this, it was not really necessary to compute the residuum exactly. We could have used
x=x-A\(A.x-b). But if A isbadly conditioned, thiswill give aworse result.

Let us demonstrate the exact scalar product.

>t =exp(randon{ 1, 100) *40) ; x=-t|t]| 1;
>| ongf or mat; sun(x),

6. 567650591472
>accul oad(x),

1. 000000000000

Itis clear that the sum over the elements of x is 1. And accuload correctly computes this sum. Y ou
may also use the following method.

>{y,i}=sort(abs(x)); sum(x[flipx(i)]),
1. 000000000000

This sorts x in descending absolute values and adds them. However accuload is just asfast and it
will also handle scalar products.

>y=t|t|1l, x.y,
-9.27123614247e+18

>accul oad(x,y),
1. 000000000000

The Hilbert matrix is badly conditioned. Let us try the 8x8 Hilbert matrix. To avoid round-off in

input, hilb multipliesit with afactor. So H is exactly representable in the computer up to 28 rows.

>H=hi | b(8): b=sunm(H); x=H b,
. 000000000001

. 999999999955

. 000000000648

. 999999996236

. 000000010663

. 999999984321

. 000000011500

. 999999996676

ORrORrOroOor

We get a considerable deviation from the correct solution (1,...,1)’. Oneresidual iteration removes
thiserror.

>r=residuumH, x, b); x=x-Hr,
. 000000000000
. 000000000000
. 000000000000
. 000000000000
. 000000000000
. 000000000000
. 000000000000
. 000000000000

RPRRRPRRPRRRR

To compute an inclusion, we use the interval Gauss method to compute an interval inclusion of the
residuum.

>x=H\b; x=x-H\ ~r~
~0. 999999996598, 1. 000000003402~
~0. 999999995447, 1. 000000004553~
~0. 999999997545, 1. 000000002455~
~0. 999999999070, 1. 000000000930~
~0. 999999999703, 1. 000000000297~
~0. 999999999925, 1. 000000000075~
~0. 999999999984, 1. 000000000016~
~0. 999999999996, 1. 000000000004~

Thisis sort of disappointing. And it may fail, if the Gauss algorithm decides that H may be singular.
L et us use another method to improve x.

>R=inv(H); Me~-residuum(R H,id(8))~; f=~residuum R b, 0)~;
>| ongestformat; xn=resi duum(M x,-f), shortformat;

~9. 9999999999999956e- 01, 1. 0000000000000002e+00~

~9. 9999999999999944e- 01, 1. 0000000000000007e+00~

~9. 9999999999999878e- 01, 1. 0000000000000011e+00~

~9. 9999999999999811e- 01, 1. 0000000000000018e+00~

~9. 9999999999999589e- 01, 1. 0000000000000040e+00~

~9. 9999999999999800e- 01, 1. 0000000000000020e+00~

~9. 9999999999999922e- 01, 1. 0000000000000007e+00~

~9. 9999999999999956e- 01, 1. 0000000000000004e+00~

What we have doneis an iteration step with a pseudo inverse R. R is close to theinverse of H. We
then computed an inclusion of R.b-(I-R.H).x in an interval manner. Since H is exact, it iscrucia to
use an exact scalar product for I-R.H. Otherwise, the inclusions are not satisfying. We have also
proved that the above vector contains the exact solution and that H is regular, because xnis
properly contained in x. (Thisis a Theorem, which the reader may found in papers of Rump.)

>Xn << X,
1. 00000
1. 00000

. 00000
. 00000
. 00000
. 00000
. 00000
. 00000

RPRRRPRRR

InINTERVAL.E thereisasolver for interval LGS. Using this,

>l oad "interval";

>h=hi | b(8); b=sun(h);

>l ongestformat; ilgs(h,b), shortformat;
~9. 9999999999999978e- 01, 1. 0000000000000002e+00~
~9. 9999999999999978e- 01, 1. 0000000000000002e+00~
~9. 9999999999999978e- 01, 1. 0000000000000002e+00~
~9. 9999999999999978e- 01, 1. 0000000000000002e+00~
~9. 9999999999999978e- 01, 1. 0000000000000002e+00~
~9. 9999999999999978e- 01, 1. 0000000000000002e+00~
~9. 9999999999999978e- 01, 1. 0000000000000002e+00~
~9. 9999999999999978e- 01, 1. 0000000000000002e+00~

we get agood inclusion, plus a proof that the interval contains a solution and that hilb(8) isregular.

Exact evaluation

EULER can evaluate expressions more exactly, using residual iterations. As an example, we take
the polynomial

>| ongf or mat ;
>p=[- 945804881, 1753426039, - 1083557822, 223200658]
Colum 1 to 2:

- 945804881 1753426039
Colum 3 to 4:

-1083557822 223200658

We evaluate it at a special point.

>pol yval (p, 1. 61801916)
-1.160660758615e- 07

However this answer is completely wrong. We get a better result with

>xpol yval (p, 1. 61801916)
-1.708110500122e- 12

An inclusion can be derived with interval methods.

>l oad "interval"

This file contains the followi ng interval nmethods, all producing

guar ant eed bounds.

idgl, a sinple DLG sol ver.

ilgs, a linear system solver.

iinv, conputes an inclusion of the inverse.

i polyval, a polynonial evaluation

i newmt on, interval Newton nethod

i newt on2, Newton nethod in several dinmensions.

>i pol yval (p, 1. 61801916)
~-1.7081105002e-12, - 1. 70811050003e- 12~

Next, we evaluate an expression.

>x=10864; y=18817; 9*x"4-yr4+42*y"2,
2

This answer iswrong. To get a correct answer, we transform the problem into alinear system. This
issimple. We can use x[1]=X, X[2]=X[1]*X, etc.

>A=i d(9);
SA[2,1]=-x; A 3,2]=-x; A4, 3]=x;
>A[6, 5] =-y; A[7,6]=y; A8 7]=y;
>A[9,4]=-9; A[9,8]=1; A9, 6]=-2;
>b=[x 000y 00O 0]";
>v=x| usol ve(A b); v[9]

1

Thisisthe correct answer. ilgs provides an inclusion.

>v=il gs(A b); v[9]
~0. 99999999999999978, 1. 0000000000000002~

| nterval methods

We compute an interval inclusion of the integral of sin from O to pi. First we set up avector of
intervals covering [O,pi].

>shortformat; t=linspace(0, pi, 1000);
>n=col s(t); i=~t[1:n-1],t[2:n]~; i[1:3]
Colum 1 to 2:
~0. 00000, 0. 00314~ ~0. 00314, 0. 00628~
Colum 3 to 3:
~0. 00628, 0. 00942~

Then we sum up

>h=pi / 1000; sum(sin(i))*h
~1. 99685, 2. 00315~

Thisisan inclusion. We could try to get a better one with the Simpson method.

>f=4-mod(1:n,2)*2; f[1]=1; f[n]=1; f[1:6], f[n-5:n],
I

Colum 1 to 4:

1. 00000 4. 00000 2. 00000 4. 00000
Colum 5 to 6:

2. 00000 4. 00000
Colum 1 to 4:

4. 00000 2. 00000 4. 00000 2. 00000
Colum 5 to 6:

4. 00000 1. 00000

>l ongestformat; r=sun(f*sin(~t~))*h/3
~2. 0000000000008753e+00, 2. 0000000000013367e+00~

Thisisnot an inclusion. we have to add an error term. The 4-th derivative of sinis bounded by 1, so
we get

>r-~-1, 1~*~pi ~/ 180*h"4
~1.9999999999991747e+00, 2. 0000000000030371e+00~

Thisisan inclusion of the integral.

Let us now demonstrate an interval differential equation solver.

>l oad "interval"

>hel p idgl

function idgl (fff,x,y0)

Conpute the solution of y =fff(t,y0,...) at points t with
y(t[1])=y0. ,

The result is an interval vector of val ues.

Additional argunments are passed to fff.

The function idgl contained in idgl.e will compute an interval inclusion for the solution using avery
primitive Euler polygon method. We have to enter the differential equation, here y’ =t*y"2.

>function f(t,y)
$return t*yn2
$endf uncti on

Now we set theinitial value y(0)=1 and the step size to 1/1000.

>x=0: 0. 001: 1;

>y=idgl ("f", x, 1);

>y[col s(y)]
~1.99604, 2. 00399~

Thisisan inclusion of y(1). The correct value is 2. The solution is 1/(1-t"2).

>s=1/ (1- x"2/ 2))
>nonzeros(! (s <<= y))

Thusy contains the correct solution.

Let us demonstrate the interval Newton method.

>l oad "interval"

>hel p i newt on

function inewton (ffunc,fder, x)

Conputes an interval inclusion of the zero of ffunc.
fder is an inclusion of the derivative of ffunc.

The initial interval x nust already contain a zero.

We have to enter afunction and its derivative.
>function f(x)

$return x~5-3*x-1

$endf uncti on

>function f1(x)

$return 5*x"4-3
$endf uncti on

inewton does the rest.

>l ongestformat; inewton("f","f1",~1,2~), shortfornat;
~1.3887919844072540e+00, 1. 3887919844072545e+00~

We have aso proved that the interval [1,2] contains exactly one solution of f(x)=0.

Y ou could also pass expressionsin x to inewton.

>i newt on(" x"5-3*x-1", "5*x"4-3", ~1, 2~)

A similar Newton method worksin several dimensions.

function f(x)
return [x[1]*x[2] *x[3]-1, x[1]-2*x[2], x[2] *2-Xx[3] - 2]
endf uncti on

function Jf(x)
return [x[2]*x[3], x[1] *x[3], x[1] *x[2];
1,-2,0;
0,2*x[2], -1]
endfuncti on

Thisis afunction in three dimensions and its Jacobian.

| ongest f or mat ;
x=newt on2("f","Jf",[1,1,1]); f(x),
Colum 1 to 2:
2.2204460492503131e- 16 0. 0000000000000000
Colum 3 to 3:
4.4408920985006262e- 16
i newton2("f","Jf",[1,1,1]),
Colum 1 to 1:
~2.9831157345242825e+00, 2. 9831157345242847e+00~
Colum 2 to 2:
~1.4915578672621415e+00, 1. 4915578672621421e+00~
Colum 3 to 3:
~2.2474487139158886e- 01, 2. 2474487139158927e- 01~
shortformat;

newton2 isjust atwo dimensional analog of the Newton method. It converges against x. f(X) is
indeed a small value. inewton2 produces a verified interval inclusion of the solution.

