Autoevaluación y autoaprendizaje del Algebra lineal.
Manuel Palacios

 

La respuesta 1 anterior NO es CORRECTA. Lea la explicación siguiente y pruebe otra vez.


Cap.7/Ejerc.2/Preg.2: Explicación


Una base es ortonormada con respecto al producto escalar f si sus vectores son ortogonales y de norma unidad

Basta comprobar que esta familia, la base canónica, no es ortogonal ni unitaria con respecto a este producto escalar. Por ejemplo, u1 . u2 = f(u1, u2) = - 2

Además, la matriz coordenada del producto escalar con respecto a una base ortonormada cualquiera es la matriz unidad y, como ya hemos visto, no ocurre en este caso.


página 
anterior Formular otra vez la misma pregunta.