Autoevaluación 4

- 1. Sean f y g aplicaciones lineales definidas de $\mathbb{R}^n \to \mathbb{R}^n$ con ecuaciones coordenadas respecto de la base canónica Y = AX e Y = BX, respectivamente. Entonces, la matriz coordenada de $(g \circ f)^{-1}$ respecto de la base canónica:
 - a) No existe.
 - b) Es $A^{-1}B^{-1}$.
 - c) Existe si A y B son regulares.
 - d) Es $B^{-1}A^{-1}$.
- 2. Dada la matriz

$$A = \left[\begin{array}{cccc} -1 & 0 & 3 & -3 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 1 & 2 & -4 \end{array} \right]$$

entonces:

- a) No se puede aplicar el método de la potencia porque no hay un valor propio dominante.
- b) Se puede aplicar el método de la potencia aunque no haya una base de vectores propios.
- c) Al aplicar el método de la potencia a la matriz A se obtendría como solución una aproximación al valor propio t=-1.
- d) Al aplicar el método de la potencia a la matriz A^{-1} se obtendría como solución una aproximación al valor propio t=-1.
- 3. Sea A la matriz coordenada de un endomorfismo diagonalizable, g, cuyos valores propios son 0, 1 y -1, con multiplicidades algebraicas 2, 1 y 2, respectivamente. Entonces
 - a) q es isomorfismo.
 - b) dim Ker q=2.
 - c) Los valores propios de $g \circ g$ son 0 y 1.
 - d) dim Im g=4.
- 4. Sea $A \in \mathcal{M}_3(\mathbb{R})$ tal que rang A = 2, entonces
 - a) $\lambda = 0$ es valor propio de A.
 - b) $\dim S(0) = 1$.
 - c) m(0) = 1.
 - d) $A\mathbf{x} = \mathbf{b}$ es incompatible para todo $\mathbf{b} \neq \mathbf{0}$.

- 5. Sea $h \in \text{End}(\mathbb{R}^5)$ de ecuación coordenada respecto de la base canónica Y = AX, con polinomio característico: $x(x-1)(x-2)(x+1)^2$ y rang (A+I)=3.
 - a) Como dim $S(-1) \neq m(-1)$, A no es diagonalizable.
 - b) $Im h = S(1) \oplus S(2) \oplus S(-1)$.
 - c) $\mathbb{R}^5 = \operatorname{Ker} h \oplus S(1) \oplus S(2) \oplus S(-1)$.
 - d) $A\mathbf{x} = \mathbf{0}$ no es compatible determinado.
- 6. Sea V un espacio vectorial real y $h \in \text{End}(V)$ inyectivo. Si existe $0_v \neq v_1 \in V$ fijo y se sabe que $(x-2)^3$ divide al polinomio característico de h, entonces:
 - a) $\lambda = 0$ es valor propio de h.
 - b) $\lambda = 1$ es valor propio de h.
 - c) $\lambda = 1$ es valor propio de $h y m(2) \leq \dim S(2)$.
 - $d) \dim V = 3.$

Problema

Considera la matriz

$$A = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 2 & 0 & -2 & 4 \\ -1 & 1 & 3 & -2 \\ -1 & 1 & 1 & 0 \end{array}\right)$$

- 1. Calcula los valores propios de A y sus multiplicidades algebraica y geométrica.
- 2. Halla una base para cada uno de los subespacios fundamentales.
- 3. ¿Es A diagonalizable? En caso afirmativo, encuentra una base de \mathbb{R}^4 respecto de la cual la matriz semejante a la A sea una matriz diagonal D. Justifica que A y D son matrices semejantes.
- 4. Comprueba que la familia $\{v_i\}_{i=1}^4 = \{(-2,0,0,1), (0,-2,1,1), (1,0,1,0), (1,1,0,0)\}$ es una base de \mathbb{R}^4 de vectores propios de A e indica cuál es la matriz semejante a A asociada a dicha base.
- 5. Calcula A^4 , sin realizar el producto A.A.A.