6 Cálculo aproximado de valores propios.

Ejercicio 6.1 .- Usar el teorema de Gerschgorin para determinar cotas para los valores propios de las matrices siguientes:

$$A = \begin{pmatrix} -4 & 0 & 1 & 3 \\ 0 & -4 & 2 & 1 \\ 1 & 2 & -2 & 0 \\ 3 & 1 & 0 & -4 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 3 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$

Ejercicio 6.2 .- Utilizando el teorema de Gerschgorin, obtener una cota superior de $cond_2(A) = ||A||_2 ||A^{-1}||_2$ para la matriz

$$A = \left(\begin{array}{ccc} 5.2 & 0.6 & 2.2 \\ 0.6 & 6.4 & 0.5 \\ 2.2 & 0.5 & 4.7 \end{array}\right).$$

Ejercicio 6.3 .- Comprobar que las partes imaginarias de los valores propios de la matriz:

$$A = \left(\begin{array}{ccc} 3 & \frac{1}{3} & \frac{2}{3} \\ 1 & -4 & 0 \\ \frac{1}{2} & \frac{1}{2} & -1 \end{array}\right)$$

están situadas en el intervalo [-1, 1].

Ejercicio 6.4 .- Sea la matriz simétrica real:

$$A = \begin{pmatrix} -9 & * & * & * & * \\ * & 0 & * & * & * \\ * & * & 1 & * & * \\ * & * & * & 4 & * \\ * & * & * & * & 21 \end{pmatrix}$$

donde los * representan números de valor absoluto $\leq \frac{1}{4}$.

- a) Demostrar que el método de la potencia es convergente para A, dando una idea del orden de la velocidad de convergencia.
- b) Demostrar que si se toma como vector inicial $x^{(0)} = (0, 0, 0, 0, 1)^T$, el error en la primera iteración para calcular el valor propio dominante es $\leq \frac{1}{2}$.

Ejercicio 6.5 .- Sea u_1 un vector propio asociado al valor propio λ_1 de A y w_2 un vector propio asociado al valor propio λ_2 de B. Probar que si $B = A - \lambda_1 u_1 v^T$, entonces el vector $u_2 = (\lambda_2 - \lambda_1)w_2 + \lambda_1(v^T w_2)u_1$ es un vector propio de A asociado a λ_2 .

Ejercicio 6.6 .- Sea la matriz $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$, con valores propios 1 y 3. Aplicar tres veces el método de la potencia $u_{k+1} = Au_k$ al valor inicial elegido $u_0 = (1,0)^T$. ¿Cuál es el vector límite u_{∞} ?.

Ejercicio 6.7 .- Para la matriz A del problema anterior, tomando como elección inicial $u_0 = (3,4)^T$, comparar los resultados de :

- a) tres pasos del método de la potencia inversa: $u_{k+1} = A^{-1}u_k$
- b) un paso trasladado $u_1 = (A \alpha I)^{-1} u_0$, con $\alpha = \frac{u_0^T A u_0}{u_0^T u_0}$.

Ejercicio 6.8 .- Sea $A = \begin{pmatrix} 4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3 \end{pmatrix}$. Aplicar el método de Jacobi para obtener los valores propios de A y los vectores propios asociados.

Ejercicio 6.9 .- Dada la matriz
$$A = \begin{pmatrix} -2 & 3 & 0 \\ -2 & 3 & 1 \\ 1 & -1 & -\frac{5}{2} \end{pmatrix}$$
:

- a) Encontrar el valor propio de módulo máximo con una tolerancia de 10^{-2} .
- b) Probar, sin calcularlos todos, que el valor calculado en a) es realmente el de módulo máximo.
- c) Suponiendo que el valor propio de módulo máximo, calculado con una tolerancia de 10^{-2} , es $\lambda_1 = -2.00002$, ¿cómo se calcularía una mejor aproximación $\tilde{\lambda}_1$ con una tolerancia de, por ejemplo, 10^{-6} ?.
- d) ¿Cómo se explica que para hallar la aproximación λ_1 anterior se necesiten 10 iteraciones con el método de la potencia y para hallar $\tilde{\lambda}_1$ sean necesarias sólo 2 iteraciones del método de la potencia inversa?.

Ejercicio 6.10 .- Sea

$$A = \begin{pmatrix} 4 & 1 & -2 & 2 \\ 1 & 2 & 0 & 1 \\ -2 & 0 & 3 & -2 \\ 2 & 1 & -2 & -1 \end{pmatrix},$$

Aplicar a A una transformación Householder para obtener una matriz tridiagonal.

Ejercicio 6.11 .- Utilizando el método de la potencia para calcular el valor propio de módulo máximo de las matrices A y B siguientes:

$$A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 10^{-4} & 0 & 0 & 2 \end{pmatrix},$$

se han obtenido los resultados de la tabla 1.

Tolerancia	Num. iterac.	Val. prop.	Tolerancia	Num. iterac.	Val. prop.
10^{-4}	246	2.024	10^{-4}	87	2.098
10^{-6}	2450	2.002	10^{-6}	201	2.100
10^{-8}	24496	2.000	10^{-8}	277	2.100

Table 1: Resultados para las matrices A y B, respectivamente.

Explicar por qué estos resultados y por qué son tan distintos en ambos casos.