ESTADÍSTICA

1. Para efectuar una valoración del sistema de fabricación de un producto farmacéutico que debe contener 15 mg/ml de un principio activo, se sabe que las concentraciones en el producto real fabricado obedece a una distribución de probabilidad normal. Se toman muestras en cada uno de 60 lotes fabricados y se obtiene la concentración del principio activo, dando los resultados recogidos en la siguiente tabla de frecuencias:

rango de concentraciones en mg/ml	número de lotes
14.25 - 14.50	1
14.50-14.75	8
14.75 - 15.00	21
15.00-15.25	20
15.25 - 15.50	9
15.50 - 15.75	1

- a) Obtener la media y la desviación típica y dibujar el polígono de frecuencias y la curva normal asociada a estos resultados. Comparar las frecuencias teóricas que se deducen de esta distribución normal con las obtenidas experimentalmente.
- b) Si la legislación vigente exige que el producto puesto en venta debe contener entre 14.7 mg/ml y 15.3 mg/ml, ¿que porcentaje de lotes fabricados deberán ser retirados ? ¿que valor de α hace que el 90 % de los lotes contenga entre 15 α y 15 + α mg/ml ?
- c) El proceso de fabricación se puede modificar, de manera que la desviación típica se reduzca en un factor de 0.75, aunque el precio de cada lote aumentará en 25 % ¿Haría este ajuste más rentable el sistema? Obtener la gráfica de lotes válidos en función de la desviación típica (para valores de ésta entre 0.001 y 0.7). ¿Hasta que porcentaje de incremento en el coste de fabricación será rentable la modificación?
- 2. Se pretende comparar cuatro técnicas de análisis químico. Para ello se elabora un preparado que contiene un determinado compuesto químico con una concentración de 10 g/l. Se toman 100 muestras del preparado y se analiza cada muestra con cada una de las técnicas obteniéndose en cada caso las concentraciones del compuesto dadas en las siguientes tablas de frecuencias:

rango de concentraciones en g/l	técnica 1	técnica 2	técnica 3	técnica 4
-3 - 4	0	1	0	0
4-5	0	3	0	0
5-6	0	4	0	0
6-7	1	7	0	0
7-8	1	10	0	1
8-9	13	12	2	12
9 - 10	35	13	13	24
10 - 11	33	14	34	23
11 - 12	15	12	35	15
12 - 13	2	9	13	10
13 - 14	0	7	2	6
14-15	0	4	1	4
15-16	0	2	0	3
16-17	0	2	0	2

- a) Calcular para cada técnica la media y la desviación típica.
- b) Puesto que los resultados obtenidos teóricamente deberían ajustarse a distribuciones normales, dibujar para cada técnica el polígono de frecuencias y la curva normal correspondiente.
- c) Calcular las frecuencias teóricas en cada caso y comparar con las frecuencias obtenidas experimentalmente.
- d) Dar una valoración comparativa de las técnicas de análisis estudiadas.