Seventeenth International Conference Zaragoza-Pau on Mathematics and its Applications Jaca, September 4–6th 2024

A semi-implicit fully exactly well-balanced relaxation scheme for the shallow water system

C. Caballero-Crdenas¹, M.J. Castro¹, C. Chalons², T. Morales de Luna¹, M.L. Muoz-Ruiz¹

SUMMARY

In this work we develop first and second order semi-implicit schemes that are fully wellbalanced for the one-dimensional shallow water equations, meaning they preserve all smooth steady states of the system, and not just the water-at-rest ones. Semi-implicit methods can be computationally more efficient than explicit ones, especially in the low-Froude regime, where the wave speed significantly exceeds the fluid velocity. This is all achieved by integrating splitting and relaxation techniques. Unlike recent Lagrangian-based methods, this approach preserves all steady states while avoiding the complexities inherent in Lagrangian formalism.

Keywords: fully exactly well-balanced schemes, semi-implicit schemes, shallow water, relaxation schemes

AMS Classification: 76M12, 35L60, 65M08

¹Departamento de Anlisis Matemtico, Estadstica e IO y Matemtica Aplicada Universidad de Mlaga email: celiacaba@uma.es

²Laboratoire de Mathmatiques de Versailles Universit Versailles Saint-Quentin-en-Yvelines email: christophe.chalons@uvsq.fr