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OPTIMAL SHAPE AND LOCATION OF
SENSORS FOR WAVE PRESSURE

BOUNDARY MEASUREMENTS

Yannick Privat

Abstract. This conference paper is a synthesis of several works dedicated to the optimal
positioning of sensors, when one wishes to reconstruct an acoustic pressure from mea-
surements performed on the boundary of a domain. In a first step, we present a generic
approach to address the issue of sensor shape and location optimization, based on the
well-posedness of an inverse problem. In a second step, we try to show the limits of the
previous approach, by presenting an example of application to a medical imaging prob-
lem, which is out of this framework and is therefore more difficult to deal with.
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§1. Introduction

We report on a series of works done in collaboration with M. Bergounioux, E. Bretin, E.
Humbert, E. Trélat and E. Zuazua, concerning the problem of optimizing the shape and loca-
tion of sensors for wave like systems.

Let T > 0 and Ω be a bounded connected open subset of Rn with Lipschitz boundary.
The Lipschitz set ∂Ω is endowed with the (n − 1)-dimensional Hausdorff measure Hn−1. In
the sequel, measurability of a subset Γ ⊂ ∂Ω is understood with respect to the measureHn−1.
The purpose of this article is to introduce and analyze the issue of optimizing the shape and
location of sensors for a hyperbolic source reconstruction problem for the homogeneous wave
equation

∂tty(t, x) − ∆y(t, x) = 0 (t, x) ∈ [0,T ] ×Ω. (1)

Such a model arises in thermo-acoustic, photo-acoustic and ultrasound elastography mod-
els, in the confined domain Ω. The inverse problem at hand is: given a measurement (made
by sensors) over a certain duration T of a pressure related quantity on ∂Ω, or on a part of ∂Ω,
recover the initial pressure y(0, x).

Of course, this problem is more relevant when n = 3, but as long as it is not specified
otherwise, it is looked at here for any non-zero integer n.

Let us assume that on the boundary, the pressure is absorbed, which leads to consider
homogeneous Dirichlet boundary conditions, in other words

y(t, x) = 0, (t, x) ∈ [0,T ] × ∂Ω. (2)
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What is measured is the outgoing flux ∂νy on a part Γ of the boundary ∂Ω, where ν denotes
the outward unit normal vector on ∂Ω.

It is well known that, for all complex data (y0, y1) ∈ H1
0(Ω,C) × L2(Ω,C), there exists a

unique solution y ∈ C0([0,T ],H1
0(Ω,C))∩C1((0,T ), L2(Ω,C)) of (1) such that y(0, x) = y0(x)

and ∂ty(0, x) = y1(x) for every x ∈ Ω.
Let y be the weak solution of (1)-(2). Supposing that the trace of ∂νy is measured on a

measurable subset Γ of ∂Ω for all t ∈ (0,T ), find the initial data (y0, y1) in Ω.
The above problem belongs to a large family of inverse problems. It is known to be well

posed whenever a so-called observability property is satisfied (see e.g. [22]).
In section 2, we explain how to model and solve the problem of optimizing the position

and shape of the sensors for the physical model we have mentioned, based on an inequality
called observability. Section 3 is dedicated to the study of sensor positioning for thermo-
acoustic tomography. The notion of observability is not relevant in this context and the
approach developed in Section 2 can no longer be used. This section shows the limitations of
the approach presented in Section 2. We provide tracks to model and solve numerically the
question of the optimal design of sensors in this framework.

§2. Optimal observability issues

Optimal locations of sensors issues have been widely studied in engineering, especially in
applications such as structural acoustics, piezoelectric actuators or vibration control in me-
chanical structures. We mention in particular [1] for boundary actuators, [7] in the context of
electrical impedance tomography. Numerical tools have been developed in [2, 8, 13, 21] to
solve a simplified version of the optimal design problem where either the partial differential
equation has been replaced with a discrete approximation, or the class of optimal designs is
replaced with a compact finite-dimensional set.

The problem of optimizing the shape of the sensors, without any restriction on their com-
plexity or regularity, is infinite-dimensional and has been only little considered. Let us nev-
ertheless mention [9, 10] where the issue of determining the optimal damping term via its
support for the 1D wave equation has been considered. They highlighted the well known
spillover phenomenon arising when considering spectral approximations.

2.1. Modelling of the optimal design problem

The role of the sensors is to achieve some measurements over a time horizon [0,T ], with
which one aims at reconstructing the whole state of the system over [0,T ]. Let Γ be a mea-
surable subset of ∂Ω standing for the domain occupied by sensors. Before modelling the
optimal design problem, we need to recall that the inverse problem of recovering any initial
data of (1)-(2) from the observation of the Neumann trace of y on Γ during a time T is known
to be equivalent to the following observability property: there exists C > 0 such that for any
solution y of (1), one has

C∥(y(0, ·), ∂ty(0, ·))∥2H1
0 (Ω,C)×L2(Ω,C) ≤

∫ T

0

∫
∂Ω

χΓ(x)
∣∣∣∣∣∂y∂ν (t, x)

∣∣∣∣∣2 dHn−1 dt. (3)
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The best constant in this inequality is denoted CT (Γ). If CT (Γ) > 0 then the system (1)-(2) is
said to be observable in time T . Within the class of C∞ domains, observability holds true if
(Γ,T ) satisfies the Geometric Control Condition (GCC) (see [3]), and this sufficient condition
is almost necessary. We refer to [20, 22] for an overview of boundary observability results
for wave-like equations.

Since the constant CT (Γ) can be interpreted as a measure of the well-posed character of
the aforementioned inverse problem, it might a priori appear natural to model the problem of
optimal observability as the one of maximizing the shape functional Γ 7→ CT (Γ) over a well-
chosen set of constraints. Nevertheless, for many reasons that have been much discussed in
[16, 17, 18], the functional CT (Γ) does not appear as a so relevant criterion whenever one is
allowed to perform a lot of measurements. Moreover, it is also highlighted in these references
that using such an optimization criterion poses significant mathematical difficulties. Indeed,
roughly speaking, this constant is deterministic and provides an account for the worst possible
case. From a practical point of view, when a large number of measures is realized, one can
expect that worst cases do not arise often, and therefore look for optimal observation domains
in average. This drives us to rather consider what is referred to in the aforementioned works as
the randomized observability constant. Inspired by the randomisation procedure introduced
in [5, 6], this constant is associated with an average observability inequality. Let us briefly
describe how to compute it. There is also another interpretation of this constant in terms of
the long time asymptotics of the observability constant. One can refer for example to [11, 12]
for more explanations on this approach.

Let (ϕ j) j∈N∗ be a Hilbert basis of L2(Ω) consisting of eigenfunctions of the Dirichlet-
Laplacian operator on Ω, associated with the negative eigenvalues (−λ2

j ) j∈N∗ . Then any solu-
tion y of (1)-(2) can be expanded as

y(t, x) =
+∞∑
j=1

 a j√
λ j

eiλ jt +
b j√
λ j

e−iλ jt

 ϕ j(x), (4)

where the coefficients a j and b j belong to ℓ2(C) and account for initial data.
By plugging this expression in (3), one shows that CT (Γ) reads as the infimum of

∫ T

0

∫
Γ

∣∣∣∣∣∣∣∣
+∞∑
j=1

 a j√
λ j

ei
√
λ jt +

b j√
λ j

e−i
√
λ jt

 ∂ϕ j

∂ν

∣∣∣∣∣∣∣∣
2

dHn−1dt

over the set of all sequences (a j) and (b j) in ℓ2(C) such that
∑+∞

j=1(|a j|
2 + |b j|

2) = 1.
Selecting randomly all possible initial data for (1)-(2) leads to replace CT (Γ) with the

so-called random observability constant denoted CT,rand(Γ) and defined as the infimum of

E

∫ T

0

∫
Γ

∣∣∣∣∣∣∣∣
+∞∑
j=1

βω1, ja j√
λ j

eiλ jt +
βω2, jb j√
λ j

e−iλ jt

 ∂ϕ j

∂ν

∣∣∣∣∣∣∣∣
2

dHn−1 dt, (5)

over the set of all sequences (a j) and (b j) in ℓ2(C) such that
∑+∞

j=1(|a j|
2 + |b j|

2) = 1, where
(βω1, j) j∈N∗ and (βω2, j) j∈N∗ are two sequences of independent random variables on a probability
space (A,A,P) having mean equal to zero, variance equal to 1 and a super-exponential decay
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(for instance, independent Bernoulli random variables, see [5, 6] for more details). Here, E
is the expectation in the probability space, and runs over all possible events ω.

In spite of its intrinsic interest for the modeling of optimal shape design of sensors, the
expression of the random observability constant can be significantly simplified, by using
standard computations on random variables, as highlighted in the next result.

Proposition 1 ([18]). Let Γ ⊂ ∂Ω be measurable. We have

CT,rand(Γ) = T inf
j∈N∗

1
λ j

∫
Γ

(
∂ϕ j

∂ν
(x)

)2

dHn−1. (6)

Although not so easy to handle, this expression of CT,rand(Γ) can be numerically approxi-
mated by using an appropriate truncation (see Section 2.3).

We end this section by deriving a possible model for the optimal shape design of sensors
problems.

Note first that, if one aims at maximizing CT,rand(Γ) over every subset Γ of the boundary,
it can be easily proved that the best solution is to take Γ = ∂Ω which is not relevant from
a physical point of view. For this reason, we will consider some restriction on the set (of
sensors) Γ, by imposing Hn−1(Γ) = LHn−1(∂Ω) for some L ∈ [0, 1]. This constraint models
the sensor usage cost.

Hence, let L ∈ [0, 1] and let us introduce the set

VL =
{
χΓ | Γ ⊂ ∂Ω andHn−1(Γ) = LHn−1(∂Ω)

}
. (7)

The problem of determining the optimal shape and location of boundary sensors we will
consider reads

sup{CT,rand(Γ), χΓ ∈ VL} . (8)

Remark 1. In [14, 15, 16, 17], where internal subsets were considered to be optimized, a
closely related optimal design problem has been modeled, consisting of maximizing the infi-
mum over all modes of

∫
O
ϕ j(x)2 dx, where O denotes a subset of Ω of prescribed Lebesgue

measure. The study required assumptions on the asymptotics of ϕ2
j , and led to take into ac-

count quantum ergodicity properties, i.e., asymptotic properties of the probability measures
ϕ j(x)2 dx.

2.2. Analysis of the optimal design problem (8)

In view of analyzing the optimal design problem (8), it is convenient to consider a relaxed
version of this problem. For a ∈ L∞(∂Ω), we introduce

J∞(a) = T inf
j∈N∗

1
λ j

∫
∂Ω

a
(
∂ϕ j

∂ν

)2

dHn−1

and the relaxed optimal design problem

sup
a∈VL

J∞(a) (9)
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where

VL =

{
a ∈ L∞(∂Ω, [0, 1]) |

∫
∂Ω

a dHn−1 = LHn−1(∂Ω)
}
.

As a first step, we establish links between the two problems (8) and (9), which will prove that
it is reasonable to focus on the relaxed problem (9).

Before stating a completely general result, let us first assume for the sake of simplicity
that n = 2 and investigate two particular examples: the square Ωsq := (−π/2, π/2)2 and the
unit disk Ωdisk of R2 centered at the origin. In these cases, it is possible to provide a complete
analysis of Problems (8) and (9), by considering as a Hilbert basis of eigenfunctions.

• In the case of Ωsq:

ϕn,k(x, y) =
2
π

sin
(
n
(
x +

π

2

))
sin

(
k
(
y +

π

2

))
, (10)

associated to the eigenvalue λn,k = n2 + k2, for all (n, k) ∈ (N∗)2.

• In the case of Ωdisk:

ϕ jkm(r, θ) =
{

R0k(r)/
√

2π if j = 0,
R jk(r)Y jm(θ) if j ≥ 1,

(11)

for j ∈ N, k ∈ N∗ and m = 1, 2, where (r, θ) are the usual polar coordinates. The
functions Y jm(θ) are defined by Y j1(θ) = 1

√
π

cos( jθ) and Y j2(θ) = 1
√
π

sin( jθ), and R jk

by

R jk(r) =
√

2
J j(z jkr)
|J′j(z jk)|

, (12)

where J j is the Bessel function of the first kind of order j, and z jk > 0 is the kth-zero
of J j. The eigenvalues of the Dirichlet-Laplacian are given by the double sequence of
−z2

jk and are of multiplicity 1 if j = 0, and 2 if j ≥ 1.

Theorem 2 ([18]). If Ω denotes either Ωsq or Ωdisk, the optimal values for Problem (8) and
its convexified version (9) are the same, and moreover there exists a finite set L ⊂ [0, 1] such
that the optimal design problem (8) has a solution if, and only if L ∈ L.

Remark 2. It is furthermore notable that if Ω = Ωsq, then

max
a∈VL

J∞(a) = sup
χΓ∈VL

J∞(χΓ) =
4L
π
.

and if Ω = Ωdisk, then
max
a∈VL

J∞(a) = sup
χΓ∈VL

J∞(χΓ) = πL.

The fact that there is no-gap between both optimal values for the initial optimal design prob-
lem and its relaxed version can be extended to more general bounded connected open sets
Ω of Rn, under appropriate spectral assumptions on the domain Ω (satisfied in particular by
Ωdisk in dimension 2) that we will not state here because of their complexity. We refer to [18].
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Theorem 3 ([18]). Let Ω be a bounded connected domain of Rn with a C1,1 boundary. Un-
der strong assumptions on Ω (related to quantum ergodicity issues), the optimal values of
Problems (8) and (9) are the same.

Since it appears that the two optimization problems (8) and (9) are closely related, we
will now focus on solving the relaxed problem, which can be solved explicitly in some cases.
With this in mind, we are introducing special functions, which are natural1 candidates for
solving the problem (9).

Definition 1 (Rellich admissible functions). Let Ω be a convex bounded connected domain
of Rn and x0 belong to Ω. We will say that the function ãx0 defined by

ãx0 (x) =
LHn−1(∂Ω)

n|Ω|
⟨x − x0, ν(x)⟩, (14)

for a.e. x ∈ ∂Ω, is a Rellich admissible function of Problem (9) whenever it belongs to the
admissible setVL.

Remark 3. It is notable that, thanks to the convexity assumption on Ω, the function ãx0 is
nonnegative as soon as x0 belongs to Ω.
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Figure 1: Plot of two Rellich densities (continuous line): for an ellipse (dotted line, left) and
for an angular sector (dotted line, right).

We end this section by investigating the optimality of Rellich densities for Problem (9).
To this aim, let us introduce the quantity ℓ∂Ω(x0) defined for x0 ∈ R

n by

ℓ∂Ω(x0) = max
x∈∂Ω
∥x − x0∥.

It coincides with the distance from x0 to the furthest point of ∂Ω.

1The introduction of such functions rests upon the so-called Rellich identity, discovered by Rellich in 1940 (see
[19]), which reads

∀x0 ∈ R
n, 2 =

1
λ j

∫
∂Ω
⟨x − x0, ν(x)⟩

(
∂ϕ

∂ν
(x)

)2

dHn−1(x) (13)

for every C1,1 or convex bounded domain Ω of Rn, where ⟨·, ·⟩ is the Euclidean scalar product in Rn, and for every
eigenfunction ϕ of the Dirichlet-Laplacian operator.
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Theorem 4. Let Ω ⊂ Rn be a convex bounded connected domain of Rn. Introduce Lc
n =

min
{
1, L∗n(Ω)

}
with

L∗n(Ω) =
n|Ω|

Hn−1(∂Ω) infx0∈Rn ℓ∂Ω(x0)
. (15)

Then, there exists a Rellich function ãx0 (defined by (14)) solving Problem (9) if and only if
L ∈ [0, Lc

n].

2.3. Spectral truncations
Having in mind realistic applications, we claim that Theorems 2 and 3 provide an answer to
the issue of optimizing the shape and location of sensors which is rather difficult to interpret.

As the measuring devices are not able to pick up too high frequencies, it seems reasonable
to consider a modal approximation of the criterion J∞, involving only a finite number of
Laplacian eigenmodes. This leads us to introduce the functional JN defined by

JN(a) = inf
1≤ j≤N

1
λ j

∫
∂Ω

a
(
∂ϕ j

∂ν

)2

dHn−1. (16)

involving the N first modes of the Dirichlet-Laplace operator.
Let M > 0 and L ∈ (0, 1). We will analyze the optimization problem

sup
a∈VL

JN(a) (PN)

where N ∈ N∗ is given.

Proposition 5. Let N ∈ N∗ and Ω denote either Ωsq or Ωdisk. Then, for every L ∈ (0, 1), the
optimal design problem (PN) has a (non unique) solution aN which is bang-bang, in other
words, which belongs toVL defined by (7).

A more complete version of this result is provided in [18, Theorem 2]. It allows to deal
with more general domains of Rn, with n ≥ 2, under an appropriate spectral property on the
domain Ω.

We end this section by illustrating Proposition 5, representating solutions to Problem (PN)
whenever Ω denotes a square or a elipse.

Figure 2: Ω = [−π/2, π/2]2 and L = 0.2. Examples of maximizers a∗N for JN and (from left
to right) N ∈ {5, 10, 20}. The bold line corresponds to the set Γ = {a∗N = 1}.
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Dirichlet case: Optimal domain for N=20 and L=0.2 Dirichlet case: Optimal domain for N=50 and L=0.2 Dirichlet case: Optimal domain for N=90 and L=0.2

Figure 3: Ω is the ellipse having as cartesian equation x2 + y2/2 = 1 and L = 0.2. Examples
of maximizers a∗N for JN and (from left to right) N ∈ {20, 50, 90}. The bold line corresponds
to the set Γ = {a∗N = 1}.

§3. Limitations of this approach: the thermo-acoustic tomography case

In this section, we take the opposite view of the approach presented so far. Indeed, we
detail a particular application that we find interesting to show the limitations of the approach
described in the previous section. It concerns thermo-acoustic tomography, a non-invasive
medical imaging technique, for which it is indeed not possible to model the optimal design
problem as we did previously. We will explain the reasons for this and propose a way to
address this issue. This part is based on [4], a collaborative work with Élie Bretin and Maïtine
Bergounioux.

Let us consider a simple model related to thermo-acoustic tomography. The principle is
rather simple: the tissue to be visualized is irradiated by an electromagnetic radio-frequency
pulse and this energy induces a heating process. This creates a thermally induced pressure
surge that propagates as a sound wave, which can be detected by sensors located outside the
body to image. By detecting pressure waves, heterogeneities can be observed: this gives
important information such as the position and/or size of tumors in breast cancer.

If measurements are made to determine the initial pressure p0, then the heterogeneities
can be identified by quantitative estimates of electrical sensitivity and conductivity. We focus
on the following question: from the knowledge of a first series of measurements, how to locate
the sensors before performing a second one, in a relevant way?

Let Ω be a convex open subset of Rd, representing the body to image, which means in
particular that

supp(p0) ⊂ Ω, (17)

where supp(p0) denotes the support of p0. Let B be a ball with a large enough radius so that
Ω ⊂ B; the set B \Ω stands for the ambient media (water or air), where the wave propagates.

The behaviour of the acoustic wave once the source p0 is known, is described by
∂tt p(t, x) − div(c(x)∇p(t, x)) = 0 in (0,T ) × B,
p(0, ·) = p0, in B,
∂t p(0, ·) = 0 in B,
p = 0 on (0,T ) × ∂B,

(18)

where T > 0 is arbitrary and c ∈ L∞(Rd) stands for the sound speed, satisfying

c(x) ≥ c0 > 0 a.e. x ∈ Rd.
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A typical choice for c is to assume it piecewise constant, depending on the nature of the
medium through which the wave travels, namely:

c = c11Ω + c21B\Ω, with (c1, c2) ∈ (R∗+)2. (19)

In the framework introduced in Section 2, it is assumed that, in a certain sense, a reflection
phenomenon of solutions at the boundary of the domain occurs. Such an assumption is not
relevant for the application we are considering here since we basically look for the initial data
and optimal sensor positions at the same time, which requires a dedicated method.

Notice that there exists R > 0 large enough such that, for every p0 ∈ H1
0(Ω), the solution

of problem (18) coincides with the solution of
∂tt p(t, x) − div(c(x)∇p(t, x)) = 0 in (0,T ) × Rd,
p(0, ·) = p0(·) in Rd,
∂t p(0, ·) = 0 in Rd,

(20)

with the convention that the initial datum p0 has been extended by 0 to the whole space Rd.
In what follows, according to the discussion above, we will choose R is large enough so that
p vanishes on ∂B all along the recording process (i.e. for t ≤ T ).

Sensors set. To model the sensors optimal positioning, we first describe the class of admissi-
ble designs/sensors to be considered. Introduce Σ ⊂ Rd as the subdomain of Rd occupied by
sensors. Roughly speaking, we will assume that every connected component of Σ is located
around the boundary of Ω and has a positive thickness ε. Precisely, we assume the existence
of a measurable set Γ ⊂ ∂Ω such that

Σ = {s + µ ν(s), s ∈ Γ, µ ∈ [0, ε]} , (21)

where ν(s) denotes the outward unit normal to Ω at s (see Figure 4). The set Σ is thus
supported by the annular ring

∂̃Ω := {s + µν(s), s ∈ ∂Ω, µ ∈ [0, ε]}.

Let us introduce the class UL of functions a ∈ L∞(∂̃Ω) such that a(s + µν(s)) = X(s) for
a.e. (s, µ) ∈ ∂Ω × [0, ε] with X ∈ VL (defined by (7)), in accordance with Fig. 4. It models
admissible subsets Γ ⊂ ∂̃Ω.

Optimal location after a first series of measurements. Let pobs ∈ L2((0,T )×Σ) denote the
measured pressure: it is defined in (0,T )×Σ. We extend pobs by 0 to (0,T )×B and denote the
obtained function similarly, with a slight abuse of notation. Hence, one has pobs = 1Σ pobs

so that pobs ∈ L2(0,T, L2(B)). For p0 ∈ H1
0(Ω), we also introduce p[p0] as the solution of

Problem (18) for the initial datum p0.
The issue we address hereafter is: given a first (series of) measurement(s), how can we

determine a relevant sensor position before performing a new (series of) measurement(s)?
Our approach can be split into two steps that we roughly describe.
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The function cp¨q stands for the sound speed, and is assumed to be piecewise constant, and
writing

c “ c11⌦ ` c21Bz⌦, with pc1, c2q P pIR˚
`q2. (3)

Recall that for every initial p0 P H1
0 p⌦q, there exists a unique solution p to System (1) satisfying

moreover p P C1
`r0, T s, L2pBq˘ X C0

`r0, T s, H1
0 pBq˘

(see e.g. [3]).

Remark 1. For (future) numerical purposes, the set B is chosen bounded but it may be noticed
that, if the radius R of B is large enough, then p vanishes on B⌦ all along the recording process
(i.e. for t § T ). More precisely, there exists R ° 0 large enough such that, for every p0 P H1

0 p⌦q,
the solution of problem (1) coincides with the solution of

$
&
%

Bttppt, xq ´ divpcpxqrppt, xqq “ 0 in p0, T q ˆ IRn,
pp¨, 0q “ p0p¨q on IRn,
Btpp¨, 0q “ 0 on IRn,

(4)

with the convention that the initial datum p0 has been extended by 0 to the whole space IRn. One
refers for instance to [3]

**** Quelques précisions sur le problème inverse classique ****
For further explanations on the inverse problem, one refers to **** blabla ****

The sensors set. Solving the inverse problem aims at recovering the initial condition p0 P H1
0 p⌦q

out of boundary measurements on a set of sensors. To model the optimal design problem of locating
in the best way sensors, we first make the class of admissible designs/sensors that we will consider.

Let us endow the Lipschitz set B⌦ with the usual pn´1q-dimensional Hausdor↵ measure Hn´1.
In the sequel, we adopt the convention to say that � Ä B⌦ is measurable whenever it is measurable
for the Hausdor↵ measure Hn´1.

Introduce ⌃ Ä IRn as the subdomain of IRn occupied by sensors. Roughly speaking, we will
assume that each connected component of ⌃ is located around the boundary of ⌦ and has a positive
thickness ". More precisely, we assume the existence of a measurable set � Ä B⌦ such that

⌃ “ ts ` µ ⌫psq, s P �, µ P r0, "su , (5)

where ⌫psq denotes the outward unit normal to ⌦ at s (see figure 1). The set ⌃ is thus supported
by the annular ring

ÄB⌦ :“ ts ` µ⌫psq, s P B⌦, µ P r0, "su.

⌫psq

ŝ "�

⌃

B⌦

B
⌦ ⌃�

Figure 1: The set of sensors.

3

Figure 4: The set of sensors.

First step: determination of an initial pressure condition p0. Recall that, in the PDE model
we consider (see Eq. (18)), ∂t p(0, ·) is assumed to vanish identically in B. It is therefore
enough to reconstruct the initial pressure. A natural idea is to consider the problem

inf
p0∈P0(Ω)

A1(1Σ, p0) (22)

where the expression of A1(1Σ, p0) is

1
2

∫ T

0

∫
B

1Σ(x)(p[p0](t, x) − pobs(t, x))2 dx dt, (23)

where P0(Ω) is the subspace of H1
0(Ω) of positive functions whose support is included in a

fixed compact set of B.
Solving the resulting problem (see its definition below) is a way to define an initial pres-

sure function p̃0 reconstructed (almost) everywhere in B and not only on Σ. This is the key
point to address the optimal design problem in the second step.
Second step: determination of the best position of sensors. Once an initial pressure p̃0 has
been determined with a given position of sensors, the new position will be obtained by solving
the optimal design problem

sup
1Σ∈UL

A2(1Σ, p0),

where

A2(1Σ, p0) :=

∫ T
0

∫
B
1Σ(x)∂t p[p̃0](t, x)2 dx dt

∥p0∥
2
H1(Ω)

. (24)

The functional to maximize represents the quality of the observation and is inspired by
the expression of CT (Γ) in Section 2.1. Roughly speaking, we are looking for the position
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of the sensors allowing the best observation of the worst possible pressure p0 leading to the
observation pobs.

Detailed explanations of this approach can be found in [4]. In particular, it is explained
how to modify the modeling above to take into account a finite number of sensors. The
simulations below provide promising results on a toy problem involving a finite number of
sensors.

All the numerical simulations done with the following set of parameters:

• the set Ω is a two-dimensional ball of radius 1

• the box B = [−D/2,D/2]d has size D = 4 and the recording time is T = 2;

• the set K is a two-dimensional ball of radius 0.85

• we use a regular time step discretization dt = T/210 and dx = D/29.

• the thickness parameter ε is equal to 0.03.

To avoid the so-called inverse crime, we also use two different grids to compute the solution
of the direct and inverse problems:
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Figure 5: Initial source p0.

§4. Conclusion

This article is a first attempt to

• model and solve the problem of optimizing the number, the position or the shape of
sensors in order to improve the estimation of the state;

• efficiently locate sensors in the highly sensitive context of thermo-acoustic tomography
where the standard framework of boundary observability does not hold anymore.

While the first theoretical and numerical results appear promising, we plan to investigate this
issue further by examining other kinds of boundary conditions, 3D numerical experiments
and how to discretize efficiently such kinds of optimal design problems to recover the prop-
erties of the continuous models.
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Figure 6: Optimization of sensors position. Each line corresponds to a different choice of the
initial location of the sensors; Left: reconstructed source pn

0 after n = 30 iterations by using
initial positions of the sensors; right: reconstructed source pn

0 after n = 20 iterations by using
the new position of sensors.
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[15] Privat, Y., Trélat, E., and Zuazua, E. Optimal observation of the one-dimensional
wave equation. J. Fourier Anal. Appl. 19, 3 (2013), 514–544. Available from: http:
//dx.doi.org/10.1007/s00041-013-9267-4.
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