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COMPUTING BUOYANCY FLOWS WITH
STABILIZED FINITE ELEMENT METHODS:
THE BOUSSINESQ APPROACH VERSUS
THE FULL NAVIER-STOKES EQUATIONS

Guillermo Hauke and Jorge Lanzarote
Abstract. This paper compares two models to simulate buoyancy flows, set in a non-
standard computational framework. The models are the Boussinesq model and the gen-
eral divariant fluid model. In both cases, the set of equations respects the second-law
of thermodynamics. The numerical framework is based on a unified approach to com-
pute compressible and incompressible flows, which solves the total energy equation and
it is numerically conservative. Numerical examples show that the general divariant fluid
model is competitive for problems with small temperature differences, whereas it is ad-
vantageous for large temperature differences. Finally, VMS adaptivity is shown to accel-
erate convergence with respect to number of degrees of freedom.
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§1. Two models for buoyancy flows

Buoyancy flows have many important practical applications in the world of climatization,
indoor ventilation and indoor comfort, and many other fluid flow problems driven by temper-
ature differences. Since the beginning of numerical methods, every existing method has been
applied to this problem and, therefore, the scientific literature is really vast (a short review of
articles dealing with this problem can be found in [15]).

This work compares two models for the simulation of low-speed buoyant flows: one
based on the generalized liquid/gas thermodynamical model and the other one based on the
Boussinesq approximation. In both cases the flow dynamics is given by the Navier-Stokes
equations including an energy or temperature equation. In the present case, the method de-
parts from the unified approach to compute compressible and incompressible flows exposed
in [12, 13, 15], which uses the total energy equation, that is, in Cartesian coordinates
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where ρ is the density, ui the Cartesian velocity components, p the pressure, τ′i j the compo-
nents of the viscous stress tensor, fmi the body force term, e the specific internal energy, qi

the heat flux vector components and q̇v the volumetric heat source.
In vector form, the above system of equations can be written as

U,t + Fadv
i,i = Fdiff

i,i + S (2)

where U is the vector of conservation variables, Fadv
i the i-th Euler Jacobian, Fdiff

i the i-th
diffusive flux and S the source vector.

1.1. Generalized fluid model
Real fluids (even incompressible liquids) display compressible behavior and, therefore, their
density is a function of temperature and pressure. One way of modeling the equation of state
of such fluids is through the model of a general divariant substance, in which the thermo-
dynamic variables depend on two independent thermodynamic variables. In [3, 12, 13] the
thermodynamic variables are taken as the compressibility coefficients at constant pressure αp

and at constant temperature βT ,
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This model has non-standard features for the simulation of buoyancy flows, which en-
dowed the method with important advantages:

(i) As explained in the unified approach of [12, 13], the present model is based on the
conservative form of the transport equations and it uses the total energy equation in-
stead of the temperature equation. Thus, the finite element method that emanates from
is conservative.

(ii) This model is valid for any temperature gradient (compare to the Boussinesq model,
which holds up to relative temperature variations of about 10%[8]).

(iii) As shown in [3, 12, 13, 14, 15] this model satisfies the second law of thermodynamics.
This is specially relevant, since many of the models for buoyancy driven flows violate
this principle [23, 24]. Another important consequence of this property is that entropy
stability can be inherited at the discrete level by the numerical formulation.

(iv) Regarding the continuity equation [9], in the present model the flow divergence may be
non-vanishing. Therefore, it is not approximated as zero, as in the Boussinesq model.

1.2. Boussinesq model
In this model, the fluid is assumed incompressible, that is, of constant density ρ0 and, there-
fore, the effect of density variations is accounted for in the source terms. In particular, the
gravity forcing term is substituted by the buoyant forces with respect to equilibrium,

fm = −gαp(T − T0) (4)



Computing buoyancy flows with stabilized finite element methods 153

where g is the gravity acceleration, ρ = ρ0 is the density at the reference temperature T0
and αp is the thermal expansion coefficient at constant pressure. Note that in this model p is
the departure from the equilibrium hydrostatic pressure [20]. It is interesting to remark the
following ideas.

(i) The entropy production of the buoyancy terms in the Boussinesq model should cancel
because gravity is a conservative field. Indeed, this is satisfied by the present model.
However, there are Boussinesq implementations that do not respect entropy production
[23, 24], which leads to physically wrong solutions [14]. From the numerical point of
view this is also an important property because the present formulation inherits stability
from the discrete second law of thermodynamics.

(ii) This model neither suffers the entropy production pitfall related to the absence of the
expansion power in the temperature or internal energy equation [23, 24].

§2. Stabilized formulation

Using any well-defined set of variables Y, it is possible to rewrite (2) in quasi-linear form as

A0Y,t + AiY,i = (Ki jY, j),i + S (5)

where A0 = U,Y, Ai = Fadv
i,Y is the ith Euler Jacobian matrix, and K = [Ki j] is the diffusivity

matrix where Ki jY, j = Fdiff
i .

In this paper, special attention is paid to the choice of pressure primitive variables,

Y =


p
u
T

 (6)

with p the pressure, ui the Cartesian velocity components and T the absolute temperature.
The matrices and vectors for these variables can be found in [13]. This set of variables is
endowed with the property that the incompressible limit is well behaved.

The quasi-linear form can be written as

LY = S0 (7)

with the differential operators defined below

LY = A0Y,t + AiY,i − (Ki jY, j),i − CY

L
T Y = AT

0 Y,t + AT
i Y,i − (KT

i jY,i), j − CT Y (8)

−L
∗Y = AT

0 Y,t + AT
i Y,i + (KT

i jY,i), j + CT Y

L
T
SUPGY = AT

i Y,i

and the source term written as
S = CY + S0 (9)

Note that the difference between LT and −L∗ is the sign of the diffusive and source terms.
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In this paper, the time-discontinuous space-time Streamline Upwind Petrov-Galerkin
(SUPG) and Subgrid-Scale (SGS) stabilized methods [2, 26] are considered. In the absence
of source terms and for linear shape functions both methods coincide.

Consider a space-time domain, where the time interval I =]0,T [ is subdivided into N
intervals In =]tn, tn+1[, n = 0, 1, . . . ,N − 1. We define for each time interval Qn = Ω × In

and Pn = Γ × In, where Ω is the spatial domain and Γ its boundary. Finally, the “slab” Qn is
decomposed into elements Qe

n, e = 1, 2, . . . , (nel)n.
Following [12, 13] the variational formulation is defined for the set of variables Y. Within

each Qn, n = 0, 1, . . . ,N − 1, find Y ∈ SY such that ∀W ∈ VY :∫
Qn

(
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(10)

The first and last integrals constitute the Galerkin terms expressed as a function of the
variables Y, again written in conservative form to ensure that the weak solution is bestowed
with the correct Rankine-Hugoniot relations. The jump term is written with the help of the
right and left limits,

W(t±n ) = lim
ϵ→0±

W(tn + ϵ) (11)

The stabilizing term is written in terms of the differential operators L and L, which have
been defined previously. According to the choice of L, Table 1 shows the finite element
methods that can be recovered.

Table 1: Relation between differential operator and type of stabilized method.

SUPG GLS SGS
L L

T
SUPG L

T
−L

∗

In the case that the source term is independent of the unknown variables and the shape
functions are linear, −L∗ = LT

SUPG = L
T . Note that when entropy variables are used, L̃ = L̃

T

because of the symmetry of the coefficient matrices and the symmetric form is recovered.
We assume

τ = Y,V τ̃ (12)

where τ̃ is the stabilization matrix for entropy variables [17, 26]. For definitions of the τ
matrix for low-speed flows based on primitive variables see the comments and references in
[15].

Note that the discontinuity-capturing operator has been omitted since we are dealing with
low-speed flows [18].
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§3. Numerical examples

3.1. Preliminaries
In order to solve compressible and incompressible flows with the same solver, in this work
the set of pressure primitive variables is chosen, Y = (p,u,T )T

For the numerical examples presented below, the full Navier-Stokes (full NS) model uses
the perfect gas equation of state. For the Boussinesq model, this equation of state is substi-
tuted by constant density. Note that the equation of state ρ = ρ(T ), would yield an approxi-
mated acoustically filtered compressible equations [20].

In this work, the following stabilization matrices are analyzed and compared: i)The com-
pressible “classic" tau matrix transformed into pressure primitive variables [26, 13]; ii) The
incompressible non-diagonal tau [13], referred here as HH, also an extension of [6]; iii) The
incompressible Polner tau, which is an extension of the above definition, with the parame-
ter ω = 0.6 [22]. The incompressible taus defined above have been updated with the newer
continuity stabilization parameter, τc, based on the inverse of the momentum stabilization
parameter, τm. See [15] and references therein for more details.

3.2. Buoyancy driven square cavity
The purpose of this section is to compare, from the computational point of view, three sim-
ulation strategies: the full Navier-Stokes equations (solved with the SUPG method) and the
Boussinesq model solved with the SUPG and SGS methods.

The definition of this problem is taken from [4, 19]. The flow in a closed squared cavity is
impulsed by temperature difference between the vertical walls (see Fig.1). The dimensionless
parameters that govern this problem are the temperature semi-difference,

ϵ =
Th − Tc

Th + Tc
=
∆T
2T0

(13)

and the Rayleigh number, defined as

Ra =
2ϵgL3

ν0α0
=
gβ∆T L3

ν0α0
(14)

where the last expression is used for the Boussinesq model. Above, T0 = (Th + Tc)/2 is the
average vertical walls temperature and the subindex 0 denotes the variables computed at T0.
Here ν = µ/ρ stands for the kinematic viscosity, and α = κ/(ρcp), the thermal diffusivity. The
above definitions usually are written as a function of β = αp,

The Boussinesq model, which gives anti-symmetric solutions, is valid up to ϵ < 0.1 [8].
For larger temperature differences one can talk about large temperature differences and the
full Navier-Stokes equations or a low Mach number model should be used [1, 16, 7].

Two temperature differences are considered in this section, ϵ = 0.01 and ϵ = 0.6. The
fluid is air with Pr = 0.71. Quadrilateral bilinear elements are employed for this test case.
Benchmark solutions for these cases can be found in [4, 5, 27, 1, 16, 28, 19, 21].

The baseline test case is run in a 70× 70 uniform mesh with ∆t = 0.1, a Generalized min-
imal Residual (GMRES) tolerance of 10−8 with a maximum of 60 iterations with 9 restarts,
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Figure 1: Buoyancy driven square cavity. Problem setup.
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Figure 2: Buoyancy driven square cavity. Comparative study of residual convergence for
various simulation strategies

and an ILU preconditioner. The classic tau allowed a larger time step for ϵ = 0.6, so a value
of ∆t = 1.0 was chosen for this case. The viscosity has been assumed constant.

Fig. 2 compares residual convergence for the models and methods. For the Boussinesq
model, both SUPG and SGS, with either the HH and the Polner taus behaved similarly, per-
haps SUPG showing faster convergence than SGS for small ϵ. Regarding the full Navier-
Stokes equations, both HH and the Polner tau behaved identically and produce a faster con-
vergence than the classic tau, although the classic tau improves convergence as the temper-
ature difference is increased. Note that for the same computing parameters and small ϵ, the
Boussinesq model converges faster than the full Navier-Stokes equations. This advantage
tends to disappear as ϵ is increased. Tables 2 and 3 compare the Nusselt numbers calculated
with the present simulation strategies compared to several benchmarks.

Finally, Figs. 3 and 4 show how VMS-adapted meshes [10, 11] can speed convergence of
the Nusselt number with a lesser amount of nodes and elements (see [15] for more details).
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Table 2: Nusselt numbers along hot vertical wall. Ra = 106, ϵ = 0.01, constant µ. Present
methods on a 140 × 140 uniform mesh with various taus.

Reference solution Nu Numin Numax

vahl Davis [4] 8.817 0.989 17.925
Le Quéré [25] 8.8252 0.97946 17.5360
Vierendeels [27] 8.8257
Masud [29] 8.81490

Present method tau Nu Numin Numax

Full NS Classic 8.0833 0.803 13.932
Full NS HH 8.8524 0.984 17.704
Full NS Polner 8.8526 0.984 17.703
Boussinesq SUPG HH 8.8540 0.982 17.689
Boussinesq SUPG Polner 8.8542 0.982 17.688
Boussinesq SGS HH 8.8632 0.985 17.704
Boussinesq SGS Polner 8.8634 0.985 17.703

Table 3: Nusselt numbers along hot vertical wall. Ra = 106, ϵ = 0.6, Sutherland viscosity.
Present methods on a 140 × 140 uniform mesh.

Reference solution Nu Numin Numax

Vierendeels et al. [28, 21] 8.6866 1.0667 20.2704
Heuveline [16, 21] 8.6861 1.0674 20.3051
Becker-Braak [1] 8.6866

Present method tau Nu Numin Numax

Full NS Classic 8.6227 1.027 17.940
Full NS HH 9.1134 1.093 21.629
Full NS Polner 9.1142 1.093 21.632
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Figure 3: Buoyancy driven square cavity. Adapted solutions for ϵ = 0.01 obtained with
various methods and the HH tau.
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Figure 4: Buoyancy driven square cavity. Nusselt numbers along hot vertical wall for ϵ = 0.6
and Sutherland viscosity for adapted meshes.

§4. Conclusion

Two stabilized methods (SUPG and SGS) have been applied to two models for buoyancy
flows, namely, the Boussinesq model and the full Navier-Stokes equations with the general
divariant fluid model. Convergence, computational cost and accuracy have been analyzed
and compared. The conclusion is that SUPG and SGS behave similarly, both in accuracy and
residual convergence. The Boussinesq model may convergence faster than the full Navier-
Stokes equations for small temperature differences, but as the temperature gradients increase,
the model based on the full Navier-Stokes equations remains valid and its computational cost
reduces to similar values than that of the Boussinesq model.

Finally, adaptivity based on VMS has been applied to the thermally driven cavity, showing
to accelerate convergence with respect to number of nodes for the maximum and minimum
Nusselt numbers.

Acknowledgements

This work has been partially funded by the Ministerio de Economia y Competitividad un-
der contract PID2019-106099RB-C44 (AEI/FEDER,UE), Gobierno de Aragon/FEDER-UE
(Grupo de Investigacion de Referencia de Mecanica de Fluidos Computacional T32 20R).

References

[1] Becker, R., and Braak, M. Solution of a stationary benchmark problem for natural
convection with large temperature difference. Int. J. Therm. Sci. 41 (2002), 428–439.

[2] Brooks, A., and Hughes, T. Streamline upwind/Petrov-Galerkin formulations for con-
vection dominated flows with particular emphasis on the incompressible Navier-Stokes
equations. Comput. Meth. Appl. Mech. Engrng. 32 (1982), 199–259.



Computing buoyancy flows with stabilized finite element methods 159

[3] Chalot, F., Hughes, T., and Shakib, F. Symmetrization of conservation laws with en-
tropy for high-temperature hypersonic computations. Computing Systems in Engineer-
ing 1 (1990), 459–521.

[4] de Vahl Davis, G. Natural convection of air in a square cavity: a bench mark numerical
solution. Int. J. Num. Meth. Fluids 3 (1983), 249–264.

[5] de Vahl Davis, G., and Jones, I. Natural convection in a square cavity: a comparison
exercise. Int. J. Num. Meth. Fluids 3 (1983), 227–248.

[6] Franca, L., and Frey, S. Stabilized finite element methods: II. the incompressible
Navier-Stokes equations. Comput. Meth. Appl. Mech. Engrng. 99 (1992), 209–233.

[7] Gravemeier, V., andWall, W. Residual-based variational multiscale methods for lam-
inar, transitional and turbulent variable-density flow at low Mach number. Int. J. Num.
Meth. Fluids 65 (2011), 1260–1278.

[8] Hamimid, S., Guellal, M., and Bouafia, M. Numerical study of natural convection in a
square cavity under non-Boussinesq conditions. Thermal Science 20, 5 (2016).

[9] Hauke, G. An introduction to fluid mechanics and transport phenomena. Springer
Science+Business Media, B.V., Berlin/Heidelberg, Germany, 2008.

[10] Hauke, G., Doweidar, M. H., and Miana, M. Proper intrinsic scales for a-posteriori
multiscale error estimation. Comput. Meth. Appl. Mech. Engrng 195 (2006), 3983–
4001.

[11] Hauke, G., Fuster, D., and Lizarraga, F. Variational multiscale a posteriori error es-
timation for systems: The Euler and Navier–Stokes equations. Computer Methods in
Applied Mechanics and Engineering 283 (2015), 1493–1524.

[12] Hauke, G., and Hughes, T. A unified approach to compressible and incompressible
flows. Comput. Meth. Appl. Mech. Engrg. 113 (1994), 389–395.

[13] Hauke, G., and Hughes, T. A comparative study of different sets of variables for solving
compressible and incompressible flows. Comput. Meth. Appl. Mech. Engrg. 153 (1998),
1–44.

[14] Hauke, G., Landaberea, A., Garmendia, I., and Canales, J. On the thermodynamics,
stability and hierarchy of entropy functions in fluid flow. Comput. Meth. Appl. Mech.
Engrg. 195 (2006), 4473–4489.

[15] Hauke, G., and Lanzarote, J. Simulation of low-speed buoyant flows with a stabilized
compressible/incompressible formulation: The full Navier-Stokes approach versus the
Boussinesq model. Algorithms 15, 278 (2022), 1–24.

[16] Heuveline, V. On higher-order mixed fem for low mach number flows: application to a
natural convection benchmark problem. Int. J. Num. Meth. Fluids 41 (2003).

[17] Hughes, T., Franca, L., and Hulbert, G. A new finite element formulation for computa-
tional fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive
equations. Comput. Meth. Appl. Mech. Engrg. 73 (1989), 173–189.

[18] Hughes, T., Scovazzi, G., and Tezduyar, T. Stabilized methods for compressible flows.
J. Sci. Comput. 43 (2010), 343–368.



160 Guillermo Hauke and Jorge Lanzarote
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