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Abstract. Chemotaxis models try to reproduce the spatial transport of a living organism
with respect to a chemical substance, which can be attractive or repulsive. Other inter-
actions between both variables are considered such as production and/or consumption of
chemical by cells, degradation of chemical or logistic reaction for living organisms. In
this work, we consider a suitable bilinear control over the system acting on the chemical
substance, by considering the case of chemo-repulsion and production effects. Then, we
analyze the existence of global optimal solution, and the obtention of first-order optimal-
ity conditions for local optimal solutions by using a Lagrange multipliers theorem.
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§1. What is chemotaxis

Chemotaxis is the biological process in which living organisms move spatially in response
to a chemical stimulus which can be given towards a higher (attractive) or lower (repulsive)
concentration of a chemical substance. At the same time, the presence of living organisms can
produce or consume chemical substance. The classical chemotaxis system was introduced by
Keller and Segel in 1970-1971 [14], relating u = u(t, x) ≥ 0 the cell density and v = v(t, x) the
chemical concentration, in the time t ≥ 0 and the space x ∈ Ω, and can be written as follows:

∂tu − ∆u ± ∇ · (u∇v) = 0 in Ω, t > 0,
∂tv − ∆v + v = g(u) in Ω, t > 0,
∂v
∂n =

∂u
∂n = 0 on ∂Ω, t > 0,

v(x, 0) = v0(x) ≥ 0, u(x, 0) = u0(x) ≥ 0 in Ω,

(1)

where the term g(u) models the production of chemical substance and the term±∇·(u∇v) mod-
els the transport of cells by either chemo-attraction (if + is considered) or chemo-repulsion
(if − is taken). Finally isolated boundary conditions and initial conditions for both variables
are considered.

From the biological point of view, some (general) properties must be satisfied:

• positivity: u ≥ 0 and v ≥ 0.
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• u mass-conservation: This can be obtained by integrating (1)1 in Ω,

d
dt

(∫
Ω

u
)
= 0, i.e.

∫
Ω

u(t) =
∫
Ω

u0, ∀t > 0.

For a detailed analysis of this kind of models the reader can consult the review of Bellomo
et al. [3] and, in particular the following result in which some production terms are considered
for the equation for both density and chemical substance:
Theorem 1 (Local classical solution and extensibility criteria). Let Ω ⊂ RN be a bounded
domain, and consider f , g ∈ C1([0,+∞) × Ω × R2

+), f (t, x, 0, v) ≥ 0, g(t, x, u, 0) ≥ 0 (if
u, v ≥ 0), and the initial conditions (u0, v0) ∈ C0(Ω) ×W1,q(Ω) (q > N) for the system:{

∂tu − ∆u ± ∇ · (u∇v) = f (t, x, u, v)
∂tv − ∆v + v = g(t, x, u, v)

Then, there exists a local in time solution, that is, there exists a Tmax ∈ (0,+∞] such that the
exists unique u, v ≥ 0 being a classical solution (u, v) ∈ C1,2((0,Tmax) × Ω). Moreover, the
following extensibility criterium holds:

If Tmax < ∞, then lim sup
t→Tmax

(
∥u(t, ·)∥L∞ + ∥v(t, ·)∥W1,q

)
→ +∞.

§2. The case of chemo-repulsion with potential production

From now on, we focus on chemo-repulsion models and, in particular, with a potential pro-
duction term. Then, (1) reads: {

∂tu − ∆u − ∇ · (u∇v) = 0,
∂tv − ∆v + v = up,

(2)

endowed with the boundary and initial conditions. Several values of p ≥ 1 can be analyzed:
• p = 1: linear term

• 1 < p ≤ 2: superlinear term (p = 2 quadratic).

• p > 2: superquadratic term (this case remains as an open problem).
In all cases, it is also posible to prove the positivity (u ≥ 0 and v ≥ 0) and the mass-
conservation for u, that is,

∫
Ω

u(t) =
∫
Ω

u0. Other properties are analyzed onwards.

2.1. Energy equality
By considering as test functions F′(u) = log(u) if p = 1 or up−1 if 1 < p ≤ 2 in the u-equation
and − 1

p∆v in the v-equation of (2), then the attraction and production effects cancel, obtaining
the energy law:

d
dt
E(u, v) +D(u, v) = 0, (3)

where the energy functional is

E(u, v) =
∫
Ω

F(u) +
1

2p

∫
Ω

|∇v|2
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and the dissipation functional is

D(u, v) =
∫
Ω

F′′(u)|∇u|2 +
1
p

∫
Ω

(|∇v|2 + |∆v|2).

The energy potential is F(u) = u log(u)−u (in the linear case), F(u) = 1
p up (in the superlinear

case). The cancellation of the chemotaxis term (in the equation for u) with the production
term (in the equation for v) is crucial for obtaining the energy equality (3). Such energy
equality allows to deduce the weak regularity estimates leading to the existence of global in
time weak solution of problem (2). Concretely, this weak solution has the regularity

(
√

u log(u) or up/2, ∇v) ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω)). (4)

The mass-conservation for u together with (4) helps to the obtention of a global in time
estimate for

(∫
Ω
v
)
, namely:

d
dt

(∫
Ω

v

)
+

∫
Ω

v =

∫
Ω

up ≤ C ⇒

∫
Ω

v ≤ C

In the proof, we use interpolation regularity results. For instance, from (4) for p , 1, it
can be proved that up/2 ∈ L10/3(0,T ; L10/3(Ω)), which implies that up ∈ L5/3(0,T ; L5/3(Ω))
and thus u ∈ L5p/3(0,T ; L5p/3(Ω)). Similar results can be deduced for ∇v, for instance ∇v ∈
L10/3(0,T ; L10/3(Ω)), and thus u∇v ∈ Lq(0,T ; Lq(Ω)) for q = 10p/(3p + 6). However, when
looking for estimates for ∇u, we must restrict to the case of p ≤ 2, because the following
equality only works well in that case:

∇u = u1−p/2∇(up/2) ∈ L5p/(3+p)(0,T ; L5p/(3+p)(Ω)).

2.2. Space framework
We define the spaces where the definition of solution and the results of existence will be
studied. Concretely, the “weak (Lp) space"

Wp := {w : wp/2 ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω))}, p > 1

and the “strong (Lq) space":

Xq := {w ∈ C([0,T ]; W2−2/q,q(Ω)) ∩ Lq(0,T ; W2,q(Ω)) : ∂tw ∈ Lq(0,T ; Lq(Ω))}, q > 1.

Space Wp is chosen due to the energy estimates, and space Xq follow from the Lq regularity
for parabolic equations with homogeneous Neumann boundary conditions using a bootstrap
argument once the regularity for up and ∇ · (u∇v) is known.

2.3. Existence results
The analysis of the existence of solution for (2), for the different values of p ∈ [1, 2] is
summarized as follows:
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• Global in time weak solution (u, v) ∈ Wp × X2 and convergence to constant states
(
∮

u0,
∮

(u0)p) as t → +∞

• Unique global in time classical solution (as in Theorem 1) for 1D and 2D domains.

Results for p = 1 for the continuous model were analyzed by Cieslak et al in [4]. The case
p = 2 for the continuous model and also the analysis of several numerical schemes can be
found in the authors’ works [8, 9, 10]; and similar results for p ∈ (1, 2) can be found in [11].
In fact, in [3] one can see that the regularity u ∈ L∞(0,T ; Lr(Ω)) for r ≥ 1 and r > N p/2
implies the extensibility criterium given in Theorem 1. Note that this regularity only holds for
1D domains. However, for 2D domains, it is proved that the regularity ∆v ∈ L2(0,T ; L2(Ω))
implies u ∈ L∞(0,T ; Lq(Ω)) for any q < ∞. Therefore, there exists global classical solution in
1D and 2D domains. Finally, questions for 3-dimensional domains, as blow-up versus global
regularity of the solutions, remain as open problems.

§3. The case of chemo-attraction with linear production

The “classical" Keller-Segel model is a chemo-attractive and linear production system:{
∂tu − ∆u + ∇ · (u∇v) = 0
∂tv − ∆v + v = u. (5)

Compared with the chemo-repusive models, as (2), the analysis of existence of (5) is more
difficult because the energy laws that can be obtained by using adequate test functions con-
tains terms difficult to control. For example, using (F′(u)−v = log(u)−v, ∂tv) as test functions
for (5), we obtain:

d
dt

E(u, v) + D(u, v) = 0

where the energy associated is E(u, v) =
∫
Ω

F(u)−
∫
Ω

uv+ 1
2

∫
Ω

(|∇v|2+ |v|2) and the dissipation
rate is D(u, v) =

∫
Ω

u|∇(F′(u)− v)|2 +
∫
Ω
|∂tv|

2. Observe that the negative term −
∫
Ω

uv must be
controlled in order to bound from below the energy, which lead to deduce regularity estimates
for (u, v). Moreover, blow-up is expected when

(
−

∫
Ω

uv
)
→ −∞. In the last 20 years, many

works have been written trying to do an answer to this and other related questions (see [16,
3, 13, 12]), obtaining (briefly) that there is no blow-up in 1D, and the blow-up in 2D and 3D
depends mainly on

(∫
Ω

u0

)
and chemotactic coefficients.

§4. Optimal control problems for chemo-repulsion models

Acting over a system in order to force the solution to behave in a convenient manner is
something interesting specially if the system reproduces a biological situation. The analysis
of such behaviour can be made through an optimal control problem. In this case, we want to
minimize the functional (for simplicity, we write the 2D version):

min J(u, v, f ) =
γu

2

∫ T

0

∫
Ω

|u − ud |
2 +

γv
2

∫ T

0

∫
Ω

|v − vd |
2 +

γ f

2+

∫ T

0

∫
Ωc

| f |2
+

(6)
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subject to the control f ∈ F being a closed convex of L2+ ((0,T ) × Ωc) (2+ means 2 + ε for
ε > 0 small enough), where Ωc is the control subdomain of Ω and being the state (u, v) the
solution of {

∂tu − ∆u ± ∇ · (u∇v) = h(u)
∂tv − ∆v = up + f v 1Ωc

(7)

endowed with boundary and initial conditions. That means that we want to drive the state
(u, v) near of desirable states (ud, vd) by using a control f as small as possible. Observe that
we have introduced the control term as a bilinear one, f v1Ωc , because we do not want to
impose positivity on f and we want to use a control f with the less regularity possible.

Note that the existence of classical in time solutions for (2) deduced for instance from
Theorem 1 cannot be applied to (7) because of the presence of the bilinear control term f (t, x)v
implies that the generic function g = g(t, xu, v) given in Theorem 1 has not the classical
regularity g ∈ C1([0,+∞) ×Ω × R2

+).
In a serie of papers, we have studied the existence of global optimal solution and first order

optimality conditions for (6)-(7). When the reaction term h(u) = 0, the chemo-repulsion
system is analyzed in [5] for 2D domains, in [6] for 3D domains, while the 2D repulsion
system replacing the production term u by the nonlinear one up (p ∈ (1, 2)) is analyzed in [7].

On the other hand, the 2D-chemo-attraction case with logistic term h(u) = u(1 − u) is the
subject of [15], where the existence of optimal solution of (7) and the first order optimality
condition for any local optimal solution including the existence of Lagrange multipliers can
be deduced only in the weak regularity framework.

4.1. Existence of solution for the chemo-repulsion control problem
For simplicity, we reduce to the repulsion case with linear production (p = 1) and without
reaction in the u-equation (h(u) = 0), remaining the problem{

∂tu − ∆u − ∇ · (u∇v) = 0
∂tv − ∆v = u + f v 1Ωc

(8)

The first step in the analysis of the optimal control problem is to guarantee the existence
of solution of (8) and a priori estimates of the possible states (u, v) depending on the control
f .

The 2D case is studied in [5]. In this case, if f ∈ L2+ (0,T ; L2+ (Ωc), there exists a unique
strong solution (u, v) ∈ X2 × X2+. Moreover, there exists C > 0 such that

∥(u, v)∥X2×X2+
≤ C∥ f ∥L2+ (0,T ;L2+ (Ωc)) (9)

The proof of this existence result is based on the Leray-Schauder Theorem, that we apply
to the operator R : (u, v)→ (u, v) solving

1. v : ∂tv − ∆v = u+ + f v+ 1Ωc

2. u : ∂tu − ∆u = ∇ · (u+∇v)
where u+ and v+ denotes the positive part of u and v, respectively (by the way, the solution
(u, v) obtained is non-negative). The main key of the proof is the obtention of the energy
estimates of (possible) fixed-points

(u, v) = λR(u, v), λ ∈ [0, 1]
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A bootstrapping argument is also used via Lp regularity of the Heat-Neumann problem.

The 3D case is studied in [6]. Now, higher regularity for f is needed. In fact, for each
f ∈ L4(Qc), there exists (u, v) ∈ W2 × X2 a weak solution of (8). However, in order to have
sufficient regularity to study the adjoint system associated to the optimal control problem, we
need to obtain a more regular solution. For this aim, it is necessary to assume for instance
the regularity criterium u ∈ L20/7(Q). If such criterium is satisfied, then (u, v) ∈ X2 × X4 is the
unique strong solution of (8) and

∥(u, v)∥X2×X4 ≤ C(∥ f ∥L4(0,T ;L4(Ωc)))

Even the proof of the existence of weak solution in W2 × X2 is not trivial (and not similar
to the 2D case). This time, we use a regularization procedure: for all ε > 0, let (uε, zε) the
solution of {

∂tuε − ∆uε − ∇ · (uε∇v(zε)) = 0
∂tzε − ∆zε = uε + f v(zε)+ 1Ωc

with v(zε) the solution of the elliptic problem v − ε∆v = zε with homogeneous Neumann
boundary conditions. Then, the existence of solution (uε, zε) for the regularized system is
obtained via Leray-Schauder Theorem, together with ε-independent energy estimates that
allow us to pass to the limit as ε → 0 (zε − v(zε) → 0), and finally obtain the existence of
weak solution of (8).

In a second step, the regularity criterium u ∈ L20/7(Q) provides the strong solution (u, v) ∈
X2 × X4 by using a bootstrapping argument.

4.2. Existence of global minimum and optimality conditions
For simplicity, we reduce to the case of 2D chemo-repulsive bilinear optimal control problem,
studied in [5]. We define the admisible set:

Sad = {s = (u, v, f ) ∈ W2 × X2+ × F : s is a weak solution of (8)}.

The existence of a global optimal solution is based on minimizing sequences and the a priori
estimate (9).

To deduce necessary optimality conditions, we use the following general procedure ap-
pearing in Zowe and Kurcyusz (see [17]), where the notions we describe onwards are used.

Definition 1. We consider the following abstract optimization problem

min
s∈M

J(s) subject to G(s) = 0, (10)

where J : X→ R is a functional, G : X→ Y is an operator, X and Y are Banach spaces, and
M is a nonempty closed and convex subset of X. In fact, the admissible set for problem (10)
is S = {s ∈ M : G(s) = 0}.

Now, we define the so-called Lagrangian functional related to problem (10) as L : X ×
Y′ → R, given by

L(s, ξ) = J(s) − ⟨ξ,G(s)⟩Y′ (11)
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Definition 2 (Lagrange multipliers). Let s̃ ∈ S be a local optimal solution for problem (10).
Suppose that J and G are Fréchet differentiable in x̃, with derivatives J′(s̃) and G′(s̃), respec-
tively. Then, ξ ∈ Y′ is called a Lagrange multiplier for (10) at the point s̃ if

⟨ξ,G(s̃)⟩Y′ = 0, L′(s̃, ξ)[r] = J′(s̃)[r] − ⟨ξ,G′(s̃)[r]⟩Y′ ≥ 0 ∀r ∈ C(s̃), (12)

where C(s̃) = {θ(s − s̃) : s ∈ M, θ ≥ 0} is the conical hull of s̃ inM.

Definition 3 (Regular points). Let s̃ ∈ S. It will be said that s̃ is a regular point if

G′(s̃)[C(s̃)] = Y.

Theorem 2 (Existence of Lagrange multipliers). Let x̃ ∈ S be a local optimal solution for
problem (10). If x̃ is a regular point, then the set of Lagrange multipliers for (10) at x̃ is
nonempty.

To apply the previous setting, we consider the operator G = (G1,G2) : X→ Y, where

X := X̃2 × X̃4 × L4((0,T ) ×Ωc), Y := L2((0,T ) ×Ω) × L4((0,T ) ×Ω),
X̃p = {v ∈ Xp : ∂nv|∂Ω = 0}
G1 : X→ L2((0,T ) ×Ω), G2 : X→ L4((0,T ) ×Ω),

and for each point s = (u, v, f ) ∈ X: G1(s) = ∂tu − ∆u − ∇ · (u∇v) in L2((0,T ) ×Ω),
G2(s) = ∂tv − ∆v + v − u − f v in L4((0,T ) ×Ω). (13)

Note that the boundary conditions for u and v have been directly considered in the spaces X̃p.
By defining

M := (û, v̂, 0) + X̂2 × X̂4 × F ,

with (û, v̂, f̂ ) a global weak solution of (8), X̂p = {v ∈ Xp : v(0) = 0, ∂nv|∂Ω = 0} and F is
defined by

F ⊂= L4(0,T ; L4(Ωc)) is a nonempty, closed and convex set,

then, the optimal control problem (6) and (8) is reformulated as (10).

4.2.1. Step 1.

Any (̂u, v̂, f̂ ) ∈ Sad is a “regular point", i.e. for any data (g1, g2) ∈ L2((0,T )×Ω)×L4((0,T )×
Ω), the linearized problem around (̂u, v̂, f̂ ): ∂tU − ∆U − ∇ · (U∇̂v + û∇V) = gu, in L2((0,T ) ×Ω),

∂tV − ∆V + V − U − f̂ V 1Ωc = gv in L4((0,T ) ×Ω),

has a solution (U,V, F) ∈ X̂2 × X̂4 × C(F ), with C(F ) = {θ( f − f̂ ) : f ∈ F , θ ≥ 0}.
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4.2.2. Step 2.

By applying Theorem 2, for any (ũ, ṽ, f̃ ) local optimal solution, then there exists Lagrange
multipliers

(λ, η) ∈ L2((0,T ) ×Ω) × L4/3((0,T ) ×Ω),

which is a (very-weak) solution of the variational problem:∫ T

0

(
∂tU − ∆U − ∇ · (U∇̂v + û∇V)

)
λ −

∫ T

0

∫
Ω

Uη = γu

∫ T

0

∫
Ω

(ũ − ud)U,∫ T

0

∫
Ω

(
∂tV − ∆V + V

)
η −

∫ T

0

∫
Ωc

f̃ Vη −
∫ T

0

∫
Ω

∇ · (ũ∇V)λ = γv

∫ T

0

∫
Ω

(ṽ − vd)V,

(14)
for any U ∈ X̂2 and V ∈ X̂4.

4.2.3. Step 3.

Let s̃ = (ũ, ṽ, f̃ ) ∈ Sad be a local optimal solution for the control problem (10). Then, by
using existence of regular solution of the multiplier problem (14) and uniqueness between a
very-weak solution and a regular solution of this multiplier problem ([5]), then the Lagrange
multiplier (λ, η) is regular and, jointly to the local optimal solution (ũ, ṽ, f̃ ), the following
optimality system holds

−∂tλ − ∆λ + ∇λ · ∇ṽ − η = γu(ũ − ud) in Q,

−∂tη − ∆η + η − ∇ · (ũ∇λ) − f̃ η 1Ωc = γv(ṽ − vd) in Q,

λ(T ) = 0, η(T ) = 0 in Ω,
∂λ

∂n
= 0,

∂η

∂n
= 0 on (0,T ) × ∂Ω.

γ f

∫ T

0

∫
Ωc

( f̃ )3F +
∫ T

0

∫
Ωc

ṽ η F ≥ 0, ∀ F ∈ C( f̃ ).

(15)

§5. Conclusions in Chemorepulsion

The bilinear control introduces a non-regular term in the chemotaxis PDE problem. In partic-
ular, classical solutions (see, for instance, Amann’s arguments [1, 2]) cannot be used. Thanks
to regularization and compactness arguments, the existence of weak or strong solutions for
optimal bilinear control problem (7), with h(u) = 0, can be proved. In 1D or 2D domains,
any weak solution is the unique strong solution, but in 3D-domains the existence of a more
regular solution needs to impose a regularity criterium. In all cases, the existence of global
optimal solution is made via a minimizing sequence argument and convexity. Finally, for any
local optimal solution, it is possible to prove optimality conditions together to the existence
of regular Lagrange multipliers.



Bilinear control problems associated to chemo-repulsion models 149

Acknowledgements

This research was partially supported by Ministerio de Ciencia e Innovación (Spain) grant
PGC2018-098308-B-I00 (MCI/AEI/FEDER, UE), US-1381261 (US/JUNTA/FEDER, UE)
and P20−01120 (PAIDI/JUNTA/FEDER, UE), with the participation of FEDER.

References

[1] Amann, H. Linear and quasilinear parabolic problems. Vol. I, vol. 89 of Monographs
in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory.
Available from: https://doi.org/10.1007/978-3-0348-9221-6.

[2] Amann, H. Linear and quasilinear parabolic problems. Vol. II, vol. 106 of Monographs
in Mathematics. Birkhäuser/Springer, Cham, 2019. Function spaces. Available from:
https://doi.org/10.1007/978-3-030-11763-4.

[3] Bellomo, N., Bellouquid, A., Tao, Y., and Winkler, M. Toward a mathematical the-
ory of Keller-Segel models of pattern formation in biological tissues. Math. Models
Methods Appl. Sci. 25, 9 (2015), 1663–1763. Available from: https://doi.org/10.
1142/S021820251550044X.
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