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Abstract. In this work, we consider a mechanical system whose mass tensor implements
a scalar product in a Riemannian manifold. This system is controlled with the help of
forces and torques. A cost functional is minimized to achieve an optimal trajectory. In this
contribution, this cost function is supposed to be an arbitrary regular function invariant
under a change of coordinates. Optimal control evolution based on Pontryagin’s principle
induces a covariant second-order ordinary differential equation for an adjoint variable
featuring the Riemann curvature tensor. This second order time evolution is derived in
this contribution.
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§1. Introduction

This work is motivated by the controlled dynamics of articulated systems. The Euler-Lagran-
ge equations are classically derived from the knowledge of kinetic and potential energies.
Moreover, the control of the system can be modelled by the addition of external forces and
torques. The search of an optimal dynamics depends on a given cost function. Then Pon-
tryagin’s approach [5] allows the emergence of a control law from the minimization of the
cost function. After a remark of Brillouin [1], developed by Lazrak and Vallée [3] and Rojas-
Quintero et al. [7, 9, 10]: a Riemannian structure is present in such a system. With a quadratic
cost function, a remarkable result has been obtained in [7, 9, 10]: the Lagrange multiplier as-
sociated to Pontryagin’s approach can be interpreted as the forces and torques submitted by
the dynamical system. This property is revisited in this contribution where the cost function
is not required to be a quadratic function anymore, but can be taken to be a general nonlinear
function instead.

In the first section, we clarify the previous choice of a natural Riemann metric for robotics.
Then in Section 2, we recall very classical results concerning differential operators on a reg-
ular Riemannian manifold. In the next section, the art of derivation suggested by Pontryagin
is emphasized. In section 5, the essential of the work done by one of us [7] and published
in [2, 8, 6] is briefly presented. A generalized approach is developped in Section 6: the cost
function is no more quadratic as it was in our previous works. Comparing the results for
quadratic and general cost functions is emphasized in the conclusion.
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§2. Riemannian metric for robotics

We consider a dynamical system parameterized by a finite number of functions of time q j(t).
The manifold of states is denoted by Q: q ≡ {q j}. In the case of an articulated system, the
mass metric M(q) depends on the general coordinates q j. This mass tensor is symmetric and
positive definite for each state. Then the kinetic energy

K(q, q̇) ≡
1
2

∑
k ℓ

Mkℓ(q) q̇k q̇ℓ (1)

is a positive definite quadratic form of the time derivatives q̇ j. The coefficients Mkℓ(q) are
ideal candidates to define a Riemannian metric structure on the configuration space.

This property has been remarked many years ago by Brillouin [1]. It is also mentioned in the
book of Spong and Vidyasagar [11]. In their contribution [3], Lazrak and Vallée emphasize
the tensorial nature of this relation. From the positivity of the kinetic energy, the mass matrix
naturally defines a Riemannian metric. This fundamental remark is the starting point of our
contribution, incorporating Riemannian geometry in the field of poly-articulated systems, id
est robotics.

§3. Classical Riemannian geometry

We follow essentially the presentation of tensorial calculus presented in Lichnerowicz [4].
We use Einstein notation for implicit summation for repeted indices. We recall very briefly
the main notions.

Inverse of the metric mass tensor M−1: M jℓ. We have the contraction Mi j M jℓ = δℓi with δℓi
the Kronecker symbol.

Covariant space differentiation along the manifold ∂ j ≡
∂
∂q j . The associated contravariant

basis of the tangent space e j is defined by e j ≡ ∂ j. The covariant basis e j of the tangent
space is defined by the relations < e j , ek >= δ

j
k, where < . , . > is the duality product

between a vector space and its dual. A contravariant vector field φ = φk ek admits also
covariant components φ j. We have the relations φ j = M jk φ

k and conversely φk = Mk j φ j

between the contravariant components φk and the covariant components.

Differentiation of a contravariant basis vector de j = Γ
ℓ
jk dqk eℓ. It introduces the connection

Γ
j
ik =

1
2 M jℓ (∂iMℓk + ∂k Mℓi − ∂ℓMik

)
. These Riemann-Christofell coefficients Γ j

ki satisfy a
symmetry property: Γ j

ki = Γ
j
ik. Then the differentiation of the covariant basis vector satisfies

the relation de j = −Γ
j
kℓ dqk eℓ.

Differentiation of a scalar field V : we have dV = ∂ jV e j. Then the gradient of the scalar
field V satisfies ∇V = ∂ℓV eℓ; it is a covector field and we have dV = ∂ℓV dqℓ =<
∇V , dq j e j >. The covariant derivative of a vector field φ ≡ φ j e j can be evaluated ac-
cording to the relation dφ =

(
∂ℓφ

j + Γ
j
ℓk φ

k) dqℓ e j. Analogously, the covariant derivative of a
covector field ξ ≡ ξℓ eℓ satisfies the condition dξ =

(
∂kξℓ−Γ

j
kℓ ξ j

)
dqk eℓ. Then the gradient of

a covector field satisfies the conditions ∇ξ =
(
∂kξℓ − Γ

j
kℓ ξ j

)
ek eℓ. It is a two times covariant
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tensor and we have dξ =< ∇ξ , dq j e j >. Similarly, the second order gradient ∇2V of a
scalar field V is defined by the relation ∇2V = ∇(∇V), id est ∇2V =

(
∂k∂ℓV − Γ

j
kℓ ∂ jV

)
ek eℓ.

It is also a two times covariant tensor.
Ricci identities for the differentiation of the metric: ∂ jMkℓ = Γ

p
jk Mℓp + Γ

p
jℓ Mkp. We have

also ∂ jMkℓ = −Γk
jp Mpℓ − Γℓjp Mpk.

The components R j
ikℓ of the Riemann tensor are defined by the relations

R j
ikℓ ≡ ∂ℓΓ

j
ik − ∂kΓ

j
iℓ + Γ

p
ik Γ

j
pℓ − Γ

p
iℓ Γ

j
pk . (2)

We observe the anti-symmetry of the Riemann tensor: R j
ikℓ = −R j

iℓk. For a given vector
field φ and covector field ξ, we introduce the covector field Rφ.ξ defined by

Rφ.ξ = Ri
kℓ j φ

k φℓ ξi e j (3)

and (Rφ.ξ) j = Ri
kℓ j φ

k φℓ ξi.
The time derivative of a state q(t) on the manifold defines a contravariant vector field ζ
according to

ζ =
dq
dt
=

( d
dt

q j
)

e j ≡ q̇ j e j (4)

and ζ j = q̇ j. In a similar way, the first order time derivative of a covector ξ = ξ j e j along a
trajectory q(t) satisfies the conditions dξ

dt =
(
ξ̇ j − Γ

k
jℓ ξk ζ

ℓ) e j.

Proposition 1. - Variation of the first and second order time derivatives of a state on a
Riemannian manifold
We consider a given trajectory position q(t) on a Riemannian manifold Q. We denote the
velocity tangent vector by ζ = dq

dt . This trajectory position is supposed to vary in an infinites-
imal way with the variation δq = δq j e j of the state. We have the relations

δ
( dq

dt

)
= δζ =

[
δ(ζ j) + Γ j

kℓ ζ
ℓ δqk

]
e j (5)

δ
( d2q

dt2

)
= δ

( dζ
dt

)
=

[
δ(ζ̇ j) + 2Γ j

kℓ ζ
k δ(ζℓ) +

(
∂kΓ

j
ℓm ζ

ℓ ζm + Γ
j
kℓ

( dζ
dt

)ℓ)
δqk

]
e j (6)

• Proof of Proposition 1.
The relation (5) is an easy consequence of the variation δeℓ = Γ

j
kℓ δq

k e j of a tangent vector
in some infinitesimal variation. We have also dζ

dt = [ζ̇ j + Γ
j
kℓ ζ

ℓ ζk] e j. Then we have

δ
( dζ

dt
)
=

[
δ(ζ̇ j) + (∂kΓ

j
mℓ) δq

k ζℓ ζm + 2 Γ j
kℓ ζ

m δ(ζℓ)
]
e j +

( dζ
dt
)ℓ
Γ

j
kℓ δq

k e j

and the relation (6) is established. □

Proposition 2. - Second time derivative of a covariant vector
If ξ = ξ j e j is a covector field on a manifold Q, we can explicit the components of the second
time derivative d2ξ

dt2 =
( d2ξ

dt2

)
j e j of this co-vector along a trajectory position q(t):

d2ξ

dt2 =
[
ξ̈ j − 2Γk

jℓ

( dξ
dt

)
k
ζ l − Γk

jℓ ξk

( dζ
dt

)ℓ
+

(
Rk
ℓm j − ∂ jΓ

k
ℓm

)
ξk ζ

ℓ ζm
]

e j . (7)
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• Proof of Proposition 2.
We differentiate relatively to time the first order derivative dξ

dt =
(
ξ̇ j−Γ

k
jℓ ξk ζ

ℓ) e j. Then
d2ξ
dt2 =

d
dt
(
ξ̇ j − Γ

k
jℓ ξk ζ

ℓ) e j +
( dξ

dt
)
k

dek

dt

=
[
ξ̈ j −

(
∂mΓ

k
jℓ
)
ξk ζ

ℓ ζm − Γk
jℓ ξ̇k ζ

ℓ − Γk
jℓ ξk ζ̇ℓ −

( dξ
dt
)
k Γ

k
jℓ ζ

ℓ
]

e j

=
[
ξ̈ j −

(
∂mΓ

k
jℓ
)
ξk ζ

ℓ ζm − Γk
jℓ

(( dξ
dt
)
k + Γ

m
kp ξm ζ p

)
ζℓ − Γk

jℓ ξk

(( dζ
dt
)ℓ
− Γℓpq ζ

p ζq
)

−Γk
jℓ
( dξ

dt
)
k ζ

ℓ
]

e j

=
[
ξ̈ j − 2Γk

jℓ
( dξ

dt
)
k ζ

ℓ − Γk
jℓ ξk

( dζ
dt
)ℓ
+
(
− ∂mΓ

k
jℓ + Γ

s
mℓ Γ

k
s j − Γ

s
jℓ Γ

k
sm

)
ξk ζ

ℓ ζm
]

e j.

But thanks to (2), we have Rk
ℓm j = ∂ jΓ

k
ℓm − ∂mΓ

k
jℓ + Γ

s
mℓ Γ

k
s j − Γ

s
jℓ Γ

k
sm

and we deduce that −∂mΓ
k
jℓ + Γ

s
mℓ Γ

k
s j − Γ

s
jℓ Γ

k
sm = Rk

ℓm j − ∂ jΓ
k
ℓm.

Then d2ξ
dt2 =

[
ξ̈ j − 2Γk

jℓ
( dξ

dt
)
k ζ

l − Γk
jℓ ξk

( dζ
dt
)ℓ
+

(
Rk
ℓm j − ∂ jΓ

k
ℓm

)
ξk ζ

ℓ ζm]
e j

and the property is established. □

§4. Pontryagin framework for differential equations

We consider a dynamical system in a finite dimensional euclidian space. A state vector
y(t, λ) ∈ Rd is submitted to a system of first order differential equations

dy
dt
= f (y(t), λ(t), t). (8)

This system is controlled by a set of dynamical parameters λ(t). The initial condition takes
the form y(0, λ) = x. We search an optimal solution that minimizes the cost function

J(λ) ≡
∫ T

0
g
(
y(t), λ(t), t

)
dt (9)

Pontryagin’s main idea (see e.g. [5]) can be formulated as follows. Consider the differential
equation dy

dt = f (y(t), λ(t), t) as a constraint satisfied by the variable y and introduce a
Lagrange multiplier p = p(t) associated with this constraint. Then a Lagrangian functional

L(y, λ, p) ≡
∫ T

0
g(y, λ, t) dt +

∫ T

0
p(t)

(dy
dt
− f (y, λ, t)

)
dt

is naturally associated with the cost function and the differential equation viewed as a con-
straint. After a classical integration by parts of the variation δL of the Lagrangian (see e.g.
[5]), it is well known that if the adjoint state p(t) satisfies the following adjoint equation

dp
dt
+ p

∂ f
∂y
−
∂g

∂y
= 0

and the final condition: p (T ) = 0, then the variation δJ of the cost function is given by the
relation

δJ =
∫ T

0

[ ∂g
∂λ
− p

∂ f
∂λ

]
δλ(t) dt
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for a given variation δλ of the parameter. At the optimum this variation is identically null
and this is expressed with the Pontryagin optimality condition ∂g

∂λ
− p ∂ f

∂λ
= 0.

§5. Optimal dynamics for a quadratic cost functional

We consider now a mechanical system described by a state q(t) on a manifold Q of finite
dimension. We suppose given a mechanical Lagrangian

L(q, ζ) ≡ K(q, ζ) − V(q)

with K(q, ζ) ≡ Mkℓ(q) ζk ζℓ the kinetic energy of the system. It defines a metric through the
mass matrix as observed previously in (1). The Euler-Lagrange equations of a free evolution
take the form

d
dt

( ∂L
∂ζ i

)
=
∂L
∂qi

for all degrees of freedom. These equations take a Riemannian form:

Mkℓ
(
ζ̇ℓ + Γℓi j ζ

i ζ j) + ∂kV = 0 (10)

and the proof of this relation can be found in [2, 7]. After some index juggling, the relation
(10) can be written ζ̇ j + Γ

j
kℓ ζ

k ζℓ + M jℓ ∂ℓV = 0.
The objective of an engineering process is the control of the state q(t) along the time, adding
forces and torques u = uk ek to the natural evolution. Observe that the control source u is a
covariant vector field on the manifold. We obtain with this process (see e.g. [7]) the evolution
equations

Mkℓ
(
ζ̇ℓ + Γℓi j ζ

i ζ j) + ∂kV = uk.

We can introduce the contravariant components u j = M jk uk for the covector. Then the
dynamical evolution equations can be written as

ζ̇ j + Γ
j
kℓ ζ

k ζℓ + M jℓ ∂ℓV = u j . (11)

A fundamental idea of our approach [3] is to enforce the coherence of the controlled me-
chanical system with a cost function J(u) that respects the Riemannian structure of the free
evolution. The choice of a quadratic functional is proposed in [7]:

J(u) =
1
2

∫ T

0
Mkℓ(q) uk uℓ dt (12)

It is possible to make a link with the Pontryagin approach (8)(9) with the choice proposed in
[2]:

y = {q j , ζ j} , f = {ζ j , −Γ
j
kℓ ζ

k ζℓ − M jℓ ∂ℓV + u j} , λ = {uk} , g =
1
2

Mkℓ(q) uk uℓ.

Observe that the quadratic functional (12) has an intrinsic structure that respects the fun-
damental mechanical constraints. The Lagrange multiplers or adjoint states take the form
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p = {ρ j , ξ j} with ρ = ρ j e j associated with the first equation dq
dt = ζ and ξ = ξ j e j multi-

plying the dynamics ζ̇ j + Γ
j
kℓ ζ

k ζℓ + M jℓ ∂ℓV − u j = 0. A very beautiful result established in
[7] is the interpretation of the adjoint state ξ as exactly equal to the forces and torques. We
have

ξ = u,

id est ξk = uk for all the covariant components. Moreover, a precise evolution equation for
the dual variable has been established.

Theorem 3. - Covariant evolution equation of the optimal force

With the above notations and hypotheses, the forces and torques u satisfy the following time
evolution: (d2u

dt2

)
j
+ Ri

kℓ j q̇k q̇ℓ ui +
(
∇2

jkV
)

uk = 0 . (13)

This relation has been derived in Rojas-Quintero’s thesis [7], and is presented in [2].

One fundamental case is the double pendulum and it has been considered for an experimental
confrontation. In this case, the manifold Q is of dimension 2. The efficiency of the choice of
a covariant quadradic functional is not a priori obvious. It is studied for the double pendulum
and compared with experiments and simulations in the references [10] and [8].

§6. General second order covariant adjoint equation

We consider in this contribution a general cost function

J(u) =
∫ T

0
γ(q, ζ, u) dt (14)

instead of the quadratic functional (12). The Lagrangian of the problem introduces the adjoint
states ρ and ξ relative to each equation of the dynamical system

dq
dt
= ζ ,

dζ
dt
− ψ(q) = u (15)

and we have

L = J(u) +
∫ T

0
ρ
( dq

dt
− ζ

)
dt +

∫ T

0
ξ
( dζ

dt
− ψ(q) − u

)
dt. (16)

Proposition 4. - Variation of the Lagrangian
For arbitrary variations (δq, δζ) of the state (q, ζ), (δp, δξ) of the Lagrange multipliers p
and ξ, and δu of the control variable u, we have the following variation δL of the la-
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grangian defined in (16):

δL =



∫ T

0
δρ

( dq
dt
− ζ

)
dt +

∫ T

0
δξ

( dζ
dt
− ψ(q) − u

)
dt

+
[(∂γ
∂ζ
−

dξ
dt

)
δq + ξ δζ

]T

0
+

∫ T

0

(∂γ
∂u
− ξ

)
(δu) j dt

+

∫ T

0

[(∂γ
∂q

)
j
−

( d
dt

(∂γ
∂ζ

))
j
+

( d2ξ

dt2

)
j

+Rk
ℓ jm ξk ζ

ℓ ζm − ξk (∂ jψ)k
]
δq j dt ,

(17)

where Rk
ℓ jm is the Riemann curvature tensor defined in (2).

• Proof of Proposition 4.
The Lagrangien of this problem can be written L = J(u) +L1 +L2 with

L1 =

∫ T

0
ρ
( dq

dt
− ζ

)
dt , L2 =

∫ T

0
ξ
( dζ

dt
− ψ(q) − u

)
dt. (18)

Recall that we have ρ = ρ j e j, ξ = ξ j e j, (δq) j = δ(q j), (δζ) j = δ(ζ j) + Γ j
kℓ ζ

k δqℓ and
(δu) j = δ(u j)+Γ j

kℓ uk δqℓ. We take the variation of the three terms of the Lagrangian function.
For the cost function defined in (14), we have

δJ =
∫ T

0

[ ∂γ
∂q δq +

∂γ
∂ζ
δζ + ∂γ

∂u δu
]

dt

=
∫ T

0

[( ∂γ
∂q

)
j δq

j +
( ∂γ
∂ζ

)
j (δζ) j +

( ∂γ
∂u

)
j (δu) j] dt

=
∫ T

0

[( ∂γ
∂q

)
j δq

j +
( ∂γ
∂ζ

)
j
(
δ(ζ j) + Γ j

kℓ ζ
k δqℓ

)
+

( ∂γ
∂u

)
j (δu) j] dt

and

δJ =
∫ T

0

[(∂γ
∂q

)
j
+ Γℓk j

(∂γ
∂ζ

)
ℓ
ζk

]
δq j dt +

∫ T

0

[(∂γ
∂ζ

)
j
δ(ζ j) +

(∂γ
∂u

)
j
(δu) j

]
dt. (19)

From dq
dt = q̇ j e j = ζ

j e j, we have

δ
( dq

dt
)
= δq̇ j e j + q̇ j δe j =

(
δq̇ j + Γ

j
kℓ ζ

k δqℓ
)
=

(
δ(ζ j) + Γ j

kℓ ζ
k δqℓ

)
= (δζ) j

and by recalling (5) of Proposition 1,
δ
(
ρ ( dq

dt − ζ)
)
= δρ

( dq
dt − ζ

)
+ ρ j

(
δq̇ j + Γ

j
kℓ ζ

k δqℓ − (δζ) j)
= δρ

( dq
dt − ζ

)
+ d

dt
(
ρ j δq j) − ρ̇ j δq j − ρ j δ(ζ j).

Then integrating by parts

δL1 =
∫ T

0 δρ
( dq

dt − ζ
)

dt + [ρ j δq j]T
0 −

∫ T
0 ρ̇ j δq j dt −

∫ T
0 ρ j δ(ζ j) dt

and

δL1 =
[
ρ j δq j]T

0 +

∫ T

0
δρ

( dq
dt
− ζ

)
dt −

∫ T

0

(
ρ̇ j δq j + ρ j δ(ζ j)

)
dt . (20)

We observe now that we have for the contravariant vector field δψ =
(
δψ j + Γ

j
kℓ ψ

k δqℓ
)

e j.
We keep the compact expression δu =

(
δu

) j e j. We can develop the third term:
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δL2 =
∫ T

0 δξ
( dζ

dt − ψ(q) − u
)

dt +
∫ T

0 ξ
(
δ dζ

dt − δψ(q) − δu
)

dt

and from (6) and Lemma 2, we have

δL2 =
∫ T

0 δξ
( dζ

dt −ψ(q)− u
)

dt +
∫ T

0 ξ j
[
δζ̇ j +

(
∂kΓ

j
ℓm ζ

ℓ ζm + Γ
j
kℓ

( dζ
dt
)ℓ)
δqk + 2Γ j

kℓ ζ
k δ(ζℓ)

]
dt

−
∫ T

0 ξ j
(
∂ℓψ

j + Γ
j
kℓ ψ

k) δqℓ dt −
∫ T

0 ξ j
(
δu

) j dt and

δL2 =


∫ T

0 δξ
( dζ

dt − ψ(q) − u
)

dt +
[
ξ j δ(ζ j)

]T
0 +

∫ T
0

(
− ξ̇ j + 2Γk

jℓ ξk ζ
ℓ) δ(ζℓ) dt

+
∫ T

0

[
ξk

(
∂ jΓ

k
ℓm ζ

ℓ ζm + Γk
jℓ
( dζ

dt
)ℓ
− ∂ jψ

k − Γk
jℓ ψ

ℓ)] δq j dt −
∫ T

0 ξ j
(
δu

) j dt.
(21)

We can now add the three contributions detailed in the relations (19), (20) and (21):

δL = [ρ j δq j + ξ j δ(ζ j)]T
0 +

∫ T
0 δρ

( dq
dt − ζ

)
dt +

∫ T
0 δξ

( dζ
dt − ψ(q) − u

)
dt

+
∫ T

0

[( ∂γ
∂q

)
j + Γ

ℓ
k j

( ∂γ
∂ζ

)
ℓ ζ

k − ρ̇ j + (∂ jΓ
k
ℓm) ξk ζ

ℓ ζm + Γk
jℓ ξk

( dζ
dt
)ℓ
− ξk

(
∂ jψ

k + Γk
jℓ ψ

ℓ)] δq j dt

+
∫ T

0

[( ∂γ
∂u

)
j − ξ j

] (
δu

) j dt +
∫ T

0

[( ∂γ
∂ζ

)
j − ρ j − ξ̇ j + 2Γk

jℓ ξk ζ
ℓ] δ(ζ j) dt.

Because δ(ζ j) = δq̇ j = d
dt (δq

j), we can integrate by parts the last term and we obtain

δL = [ρ j δq j + ξ j δ(ζ j)]T
0 +

∫ T
0 δρ

( dq
dt − ζ

)
dt +

∫ T
0 δξ

( dζ
dt − ψ(q) − u

)
dt

+
∫ T

0

[( ∂γ
∂q

)
j + Γ

ℓ
k j

( ∂γ
∂ζ

)
ℓ ζ

k − ρ̇ j + (∂ jΓ
k
ℓm) ξk ζ

ℓ ζm + Γk
jℓ ξk

( dζ
dt
)ℓ
− ξk

(
∂ jψ

k + Γk
jℓ ψ

ℓ)] δq j dt

+
∫ T

0

[( ∂γ
∂u

)
j − ξ j

]
(δu) j dt +

[(( ∂γ
∂ζ

)
j − ρ j − ξ̇ j + 2Γk

jℓ ξk ζ
ℓ) δq j]T

0

−
∫ T

0
d
dt
[( ∂γ
∂ζ

)
j − ρ j − ξ̇ j + 2Γk

jℓ ξk ζ
ℓ] δq j dt

= [
(( ∂γ
∂ζ

)
j − ξ̇ j + 2Γk

jℓ ξk ζ
ℓ)) δq j + ξ j δ(ζ j)]T

0 +
∫ T

0 δρ
( dq

dt − ζ
)

dt +
∫ T

0 δξ
( dζ

dt − ψ(q) − u
)

dt

+
∫ T

0

[( ∂γ
∂u

)
j − ξ j

]
(δu) j dt +

∫ T
0

[( ∂γ
∂q

)
j + Γ

ℓ
k j

( ∂γ
∂ζ

)
ℓ ζ

k − d
dt
( ∂γ
∂ζ

)
j + ξ̈ j + (∂ jΓ

k
ℓm) ξk ζ

ℓ ζm

+Γk
jℓ ξk

( dζ
dt
)ℓ
− 2 d

dt
(
Γk

jℓ ξk ζ
ℓ) − ξk

(
∂ jψ

k + Γk
jℓ ψ

ℓ)] δq j dt.

The boundary term can be simplified:[(( ∂γ
∂ζ

)
j − ξ̇ j + 2Γk

jℓ ξk ζ
ℓ)) δq j + ξ j δ(ζ j)

]T
0 =

[(( ∂γ
∂ζ

)
j −

( dξ
dt
)

j
)
δq j + ξ j

(
δ(ζ j) + Γ j

kℓ ζ
k δqℓ

)]T
0

=
[(( ∂γ

∂ζ

)
j −

( dξ
dt
)

j
)
δq j + ξ j (δζ) j]T

0 =
[( ∂γ
∂ζ
−

dξ
dt
)
δq + ξ δζ

]T
0

and natural boundary conditions are put in evidence.
We focus now our attention on the term containing the variation δq in factor. We have∫ T

0

[( ∂γ
∂q

)
j + Γ

ℓ
k j

( ∂γ
∂ζ

)
ℓ ζ

k − d
dt
( ∂γ
∂ζ

)
j + ξ̈ j + (∂ jΓ

k
ℓm) ξk ζ

ℓ ζm + Γk
jℓ ξk

( dζ
dt
)ℓ

−2 d
dt
(
Γk

jℓ ξk ζ
ℓ) − ξk

(
∂ jψ

k + Γk
jℓ ψ

ℓ)] δq j dt

=
∫ T

0

[( ∂γ
∂q

)
j −

( d
dt
( ∂γ
∂ζ

))
j + ξ̈ j + (∂ jΓ

k
ℓm) ξk ζ

ℓ ζm + Γk
jℓ ξk

( dζ
dt
)ℓ
− 2 (∂mΓ

k
jℓ) ξk ζ

ℓ ζm

−2Γk
jℓ
(( dξ

dt
)
k + Γ

s
kp ξs ζ

p) ζℓ − 2Γk
jℓ ξk

(( dζ
dt
)ℓ
− Γℓsm ζ

s ζm)
− ξk (∂ jψ)k] δq j dt

=
∫ T

0

[( ∂γ
∂q

)
j −

( d
dt
( ∂γ
∂ζ

))
j + ξ̈ j − Γ

k
jℓ ξk

( dζ
dt
)ℓ
− 2Γk

jℓ
( dξ

dt
)
k ζ

ℓ +
(
∂ jΓ

k
ℓm − 2 ∂mΓ

k
jℓ
)
ξk ζ

ℓ ζm

+ 2 (Γs
ℓm Γ

k
s j − Γ

s
jℓ Γ

k
sm) ξk ζ

ℓ ζm − ξk (∂ jψ)k] δq j dt

=
∫ T

0

[( ∂γ
∂q

)
j −

( d
dt
( ∂γ
∂ζ

))
j + ξ̈ j − Γ

k
jℓ ξk

( dζ
dt
)ℓ
− 2Γk

jℓ
( dξ

dt
)
k ζ

ℓ +
(
∂ jΓ

k
ℓm

)
ξk ζ

ℓ ζm
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+ 2
(
Rk
ℓm j − ∂ jΓ

k
ℓm

)
ξk ζ

ℓ ζm − ξk (∂ jψ)k] δq j dt

because Rk
ℓm j = ∂ jΓ

k
ℓm − ∂mΓ

k
jℓ + Γ

s
ℓm Γ

k
s j − Γ

s
jℓ Γ

k
sm

=
∫ T

0

[( ∂γ
∂q

)
j −

( d
dt
( ∂γ
∂ζ

))
j + ξ̈ j − Γ

k
jℓ ξk

( dζ
dt
)ℓ
− 2Γk

jℓ
( dξ

dt
)
k ζ

ℓ

+ 2 Rk
ℓm j ξk ζ

ℓ ζm − (∂ jΓ
k
ℓm

)
ξk ζ

ℓ ζm − ξk (∂ jψ)k] δq j dt

=
∫ T

0

[( ∂γ
∂q

)
j −

( d
dt
( ∂γ
∂ζ

))
j +

( d2ξ
dt2

)
j + Rk

ℓm j ξk ζ
ℓ ζm − ξk (∂ jψ)k] δq j dt

due to Lemma 2. We deduce a new expression for the variation of the Lagrangian:

δL =
[( ∂γ
∂ζ
−

dξ
dt
)
δq + ξ δζ

]T
0 +

∫ T
0 δρ

( dq
dt − ζ

)
dt +

∫ T
0 δξ

( dζ
dt − ψ(q) − u

)
dt

+
∫ T

0

( ∂γ
∂u − ξ

)
δu dt +

∫ T
0

[( ∂γ
∂q

)
j −

( d
dt
( ∂γ
∂ζ

))
j +

( d2ξ
dt2

)
j + Rk

ℓm j ξk ζ
ℓ ζm − ξk (∂ jψ)k] δq j dt

and the Proposition is established. □

We observe from (17) that the Pontryagin optimality condition is written

∂γ

∂u
= ξ.

The adjoint variable ξ is no more equal to the forces and torques u but the relation between
the two variables is completely explicited.
The boundary conditions take the quite unusual form[(∂γ

∂ζ
−

dξ
dt

)
δq + ξ δζ

]T

0
= 0 (22)

because they can cover several cases. To fix the ideas, when the initial conditions take the
usual form q(0) = q0 and ζ(0) = ζ0, with fixed given data q0 and ζ0, we have in consequence
δq(0) = 0 and δζ(0) = 0. Then the boundary conditions (22) express simply a null condition
at the final time: ξ(T ) = 0 and

( dξ
dt −

∂γ
∂ζ

)
(T ) = 0. We can also consider for other applications

that initial and final states are imposed: q(0) = q0 and q(T ) = qT . In this case, δq(0) =
δq(T ) = 0 and the expression (22) express conditions for the second Lagrange multiplier at
the initial and final time: ξ(0) = ξ(T ) = 0. Other cases can be naturally considered.

Theorem 5. - Second order adjoint evolution equation
When the source term derives from a potential, id est ψk(q) = −∂kV = Mkℓ ∂ℓV, then we
have no constraint for the first adjoint state ρ and we have a second order dynamics for the
second Lagrange multiplier:

d2ξ

dt2 − Rζ . ξ +
∂γ

∂q
−

d
dt

(∂γ
∂ζ

)
+ ∇2V. ξ = 0. (23)

• Proof of Theorem 5.
From the relation (17), the second order adjoint equation can be written as

( d2ξ

dt2

)
j
+ Rk

ℓ jm ξk ζ
ℓ ζm −

d
dt

(∂γ
∂ζ

)
j
+

(∂γ
∂q

)
j
− ξk (∂ jψ)k = 0.
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With ψ = −∂ℓV eℓ, we have the following calculus:
∂ jψ = −∂ j∂ℓV eℓ + Γs

jℓ ∂sV eℓ = −(∇2V) jℓ eℓ and

ξk (∂ jψ)k = −Mkℓ (∇2V) jℓ ξk = −(∇2V) jℓ ξ
ℓ = −(∇2V. ξ) j. Additionally, we establish the

contraction Rk
ℓ jm ξk ζ

ℓ ζm =
(
Rζ . ξ

)
j. Then the evolution equation can be written

( d2ξ

dt2 − Rζ . ξ +
∂γ

∂q
−

d
dt

(∂γ
∂ζ

)
+ ∇2V. ξ

)
j
= 0.

and the relation (23) is established. □

§7. Conclusion

We first compared the result for the quadratic cost function (12) developed in paragraph 4
and the present result studied in the previous section. The cost function is now more general.
It was written

J(u) =
1
2

∫ T

0
Mkℓ(q) uk uℓ dt

in [2] and we write it (14)

J(u) =
∫ T

0
γ(q, ζ, u) dt

in this contribution. Nevertheless, the equations of the dynamical system take the same form:

dq
dt
= ζ ,

dζ
dt
− ψ(q) = u

with the usual condition that the internal forces derive from a potential. With the particular
cost function considered in [8], the optimality condition take the form

ξ = u.

The Lagrange multiplier associated to the dynamics equation is interpreted as a force. Then
the adjoint equation derived in Vallée et al. [7, 6] is exactly a covariant evolution equa-
tion (13) for the optimal force. With the general cost function considered in this contribution,
the optimality condition can be written

∂γ

∂u
= ξ.

The dynamics of the adjoint variable ξ differs a priori from the one of forces and torques u.
We have explicited this condition in (23). We observe that in comparison with (13), two new
terms are present: ∂γ

∂q and − d
dt
( ∂γ
∂ζ

)
.

In this contribution, we have generalized the cost function used for the Pontryagin calculus in
Riemannian geometry synthesized in [2]. The cost function is still chosen in coherence with
the Riemannian geometry underlying the natural evolution of the mechanical system. The
applications of this approach in robotics are into development and first results are proposed
in [8]. The next step is the enrichement of the model with appropriate dissipation as fluid
rubbing or dry Coulomb friction.
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