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CORNER CUTTING ALGORITHMS FOR
Q-BÉZIER CURVES AND SURFACES

Jorge Delgado, Héctor Orera and Juan Manuel Peña

Abstract. In this manuscript, we present a new evaluation algorithm for q-Bernstein
polynomials that is corner cutting, a desired property for its good stability properties and
nice geometric interpretation. Moreover, this algorithm is generalized and applied to the
evaluation of rational q-Bézier curves as well as to the evaluation of rational q-Bézier
surfaces.
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§1. Introduction

For curve design purposes, the basis (u0(t), . . . , un(t)) has to be normalized (i.e., it forms a
partition of the unity:

∑n
i=0 ui(t) = 1 for all t ∈ I) and nonnegative (i.e., ui(t) ≥ 0 for all

t ∈ I and i = 0, . . . , n). It is well known in Computer Aided Geometric Design (CAGD) that
a curve representation presents nice shape preserving properties when the used normalized
basis is totally positive, that is, when all its collocation matrices have nonnegative minors (see
[1], [2])

The Bernstein polynomials bn
i (x), i = 0, 1, . . . , n, of degree n are defined as

bn
i (x) =

(
n
i

)
xi(1 − x)n−i, x ∈ [0, 1].

The Bernstein polynomials (bn
0, . . . , b

n
n) form a normalized totally positive basis of the space

of polynomials of degree at most n, Πn. Using the Bernstein polynomials, we can construct a
Bézier curve as

γ(x) =
n∑

i=0

Pibn
i (x), x ∈ [0, 1], (1)

where Pi ∈ R
k (k = 2, 3) are the control points of the curve. Bézier curves and surfaces are

frequently used in CAGD. In order to get greater flexibility, the q-Bernstein bases of polyno-
mial spaces, for values 0 < q ≤ 1, have been also used to design q-Bézier curves and surfaces
(see [4, 9, 10]). They belong to the field of Quantum Calculus (see [8]), which deals with
q-integers, q-binomial coefficients, and other q-analogues of classical calculus that will be in-
troduced in Section 2. The most desired algorithms in CAGD are the algorithms called corner
cutting algorithms, in which all steps are linear convex combinations. In addition to their nice
geometric interpretation, they satisfy nice stability properties. To the authors’ knowledge, the
existing evaluation algorithms in the literature for curve and surface evaluation of q-Bézier
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and rational q-Bézier curves and surfaces are not corner cutting algorithms. This paper fills
this gap.

In Section 2 we present the corner cutting evaluation algorithm for q-Bézier curves, deriv-
ing an explicit expression for the intermediate control points defined by the algorithm. Sec-
tion 3 presents the corner cutting evaluation algorithm for rational q-Bézier curves. Finally,
Section 4 introduces the corner cutting evaluation algorithm for rational q-Bézier surfaces.
As a particular case, it can be derived a corner cutting evaluation algorithm for tensor product
q-Bézier surfaces.

§2. q-Bernstein polynomials and q-Bézier curves

In [10], Phillips introduced a generalization of the Bernstein polynomials based on the q-
integers. Given a positive real number q, we define a q-integer [r] as

[r] =
{

1 + q + · · · + qr−1 =
1−qr

1−q , if q , 1
r, if q = 1.

Then we can define the following q-analogues in terms of the q-integers. The q-factorial [r]!
is defined as

[r]! =
{

[r] · [r − 1] · · · [1], if r ∈ N,
1, if r = 0

and the q-binomial coefficients are defined as[
n
r

]
=

[n][n − 1] · · · [n − r + 1]
[r]!

=
[n]!

[r]![n − r]!

for integers n ≥ r ≥ 0 and as zero otherwise. The q-binomial coefficients satisfy the following
recurrence relationships (see Proposition 6.1 of [8]):[

i
j

]
=

[
i − 1
j − 1

]
+ q j

[
i − 1

j

]
, (2)

[
i
j

]
= qi− j

[
i − 1
j − 1

]
+

[
i − 1

j

]
. (3)

The q-Bernstein polynomials of degree n are defined as

bn
i,q(x) =

[
n
i

]
xi

n−i−1∏
s=0

(1 − qs x), x ∈ [0, 1], i = 0, 1, . . . , n, (4)

for 0 < q ≤ 1. The q-Bernstein polynomials of degree n, Bq = (bn
0,q, b

n
1,q, . . . , b

n
n,q), also

form a normalized totally positive basis of Πn. Let us observe that for the case q = 1 the
q-Bernstein polynomials coincide with the classical Bernstein polynomials. The q-Bernstein
polynomials can be defined in terms of the following recurrence relationship (see section 2
of [9]).
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Proposition 1. The q-Bernstein polynomials (4) are given by the following recurrence rela-
tionship

bn
i,q(x) = qn−ixbn−1

i−1,q(x) + (1 − qn−i−1x)bn−1
i,q (x), (5)

where we consider b0
0,q(x) = 1 and bk

−1,q(x) = bk
k+1,q(x) = 0 for any k = 0, . . . , n.

Following the definition of Bézier curves, we define a q-Bézier curve as

γ(x) =
n∑

i=0

Pibn
i,q(x), x ∈ [0, 1], (6)

where the q-Bernstein polynomials are given by (4). Observe that for q = 1 we have again
the classical Bézier curves.

The well-known de Casteljau algorithm for the evaluation of Bézier curves is an example
of a corner cutting algorithm. However, the evaluation algorithms known for q-Bernstein
polynomials and q-Bézier curves in general do not satisfy this property (see [4, 5]). We now
introduce a corner cutting evaluation algorithm for a q-Bézier curve.

Theorem 2. Given the control points {P0, . . . , Pn}, let us define the intermediate points f (r)
i ,

for r = 0, . . . , n and i = 0, . . . , n − r, by the following recurrence relationship:

f (0)
i (x) = Pi,

f (r)
i (x) = qn−r−ix f (r−1)

i+1 (x) + (1 − qn−r−ix) f (r−1)
i (x).

(7)

Then we have that γ(x) = f (n)
0 (x).

Proof. Let us consider the q-Bézier curve γ(x) =
∑n

i=0 Pibn
i (x), x ∈ [0, 1]. We can deduce an

expression for γ(x) in terms of the q-Bernstein polynomials of degree n − 1 thanks to (5):

γ(x) =
n∑

i=0

Pibn
i (x) =

n∑
i=0

Pi

[
qn−ixbn−1

i−1 (x) + (1 − qn−i−1)xbn−1
i (x)

]
. (8)

Then we rewrite (8) by rearranging the summands and we deduce that

γ(x) =
n−1∑
i=0

[
Pi+1qn−i−1x + Pi(1 − qn−i−1x)

]
bn−1

i (x)

=

n−1∑
i=0

[
f (0)
i+1(x)qn−i−1x + f (0)

i (x)(1 − qn−i−1x)
]

bn−1
i (x)

=

n−1∑
i=0

f (1)
i (x)bn−1

i (x),

where f (1)
i (x) are given by (7). Applying this argumentation r times, we deduce the following

formula for the evaluation of the curve γ(x) in terms of the q-Bernstein polynomials of degree
n − r,
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γ(x) =
n−r∑
i=0

f (r)
i (x)bn−r

i (x). (9)

In particular, for r = n we have that γ(x) = f (n)
0 (x) and the result holds. □

The previous theorem introduces a new evaluation algorithm for q-Bézier curves. Its main
advantage with respect to other known evaluation algorithms is presented in the following
corollary.
Corollary 3. All the steps performed in the evaluation algorithm given by Theorem 2 are
convex combinations of the previously computed quantities.

Proof. Since x ∈ [0, 1] and q ∈ (0, 1], we have that the coefficients appearing in every step of
(7) are nonnegative and sum up to one. □

We have seen the relationship between the intermediate control points and the q-Bernstein
bases. Now, we introduce the explicit expression of the intermediate control points, which
are key for the extension of the evaluation algorithm to rational curves.
Proposition 4. Given the control points {P0, . . . , Pn}, the intermediate control points defined
in Theorem 2 have the following expression:

f (r)
i (x) =

r∑
k=0

Pi+k

[
r
k

]
(qn−r−ix)k

r∏
t=k+1

(1 − qn−i−t x). (10)

Proof. We proceed by induction over r. For r = 0, we see that (10) gives f (0)
i = Pi for any

i = 0, . . . , n. Now let us suppose that (10) holds for r − 1. Then we apply the recurrence
formula (7) to compute f (r)

i :

f (r)
i (x) =(1 − qn−r−ix) f (r−1)

i + qn−r−ix f (r−1)
i+1

=(1 − qn−r−ix)
r−1∑
k=0

Pi+k

[
r − 1

k

]
(qn−r−i+1x)k

r−1∏
t=k+1

(1 − qn−i−t x)

+ qn−r−ix
r−1∑
k=0

Pi+1+k

[
r − 1

k

]
(qn−r−ix)k

r−1∏
t=k+1

(1 − qn−i−1−t x). (11)

In (11), we can compute the coefficient of every point Pi using formula (2)

f (r)
i (x) =

r∑
k=0

Pi+k

([
r − 1

k

]
qk +

[
r − 1
k − 1

])
(qn−r−ix)k

r∏
t=k+1

(1 − qn−i−t x)

=

r∑
k=0

Pi+k

[
r
k

]
(qn−r−ix)k

r∏
t=k+1

(1 − qn−i−t x).

And so, formula (10) holds. □

Finally, we provide Algorithm 1 with the pseudocode for the evaluation algorithm defined
by Theorem 2.
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Algorithm 1 eval.qBezier

§3. Rational q-Bézier curves

In [5], rational q-Bézier curves were presented as a generalization of rational Bézier
curves. Given a sequence (wi)n

i=0 of strictly positive weights, a rational q-Bernstein basis
(rn

0,q, . . . , r
n
n,q) was defined as

rn
i,q(x) =

wi bn
i,q(x)∑n

i=0 wi bn
i,q(x)

, x ∈ [0, 1], for i = 0, 1, . . . , n, (12)

and a rational q-Bézier curve as

γ(x) =
n∑

i=0

Pi rn
i,q(x) =

n∑
i=0

Pi

wi bn
i,q(x)∑n

i=0 wi bn
i,q(x)

, x ∈ [0, 1], (13)

where Pi ∈ R
k (k = 2, 3) are the control points of the curve. Since the numerator and denom-

inator of formula (13) are given by q-Bézier polynomials, we could evaluate this expression
just by computing the numerator, the denominator and finally the quotient. However, this
might lead to numerical instabilities depending on the sequence of weights used (see [3, 7]).

In order to avoid this phenomenon, the idea used for rational Bézier curves and rational
q-Bézier curves has been the normalization of the weights on every step of the De Casteljau
algorithm (see [4, 6]). Following the same strategy, our proposed evaluation algorithm for
rational q-Bézier curves is presented in Algorithm 2.

The following Proposition presents the formula for the intermediate control points com-
puted at every step of Algorithm 2 and shows that the output is in fact the evaluation of the
rational curve.

Proposition 5. Given the control points {P0, . . . , Pn} and the positive weights w0, . . . , wn, the
intermediate control points defined in Algorithm 2 satisfy the following expressions:

w(r)
i (x) =

r∑
k=0

wi+k

[
r
k

]
(qn−r−ix)k

r∏
t=k+1

(1 − qn−i−t x), (14)
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f (r)
i (x) =

∑r
k=0 wi+kPi+k

[
r
k

]
(qn−r−ix)k ∏r

t=k+1(1 − qn−i−t x)

w(r)
i (x)

. (15)

In particular, we have that f (n)
0 (x) = γ(x).

Proof. We have that formula (14) comes from the application of Proposition 4 to
∑n

i=0 wi bn
i,q(x).

The argumentation for the numbers defined by (15) is analogous to the one given in Propo-
sition 4. Let us see that these numbers satisfy the recurrence relationship defined in Algo-
rithm 2:

f (r)
i (x) =(1 − qn−r−ix)

w(r−1)
i (x)

w(r)
i (x)

f (r−1)
i (x) + qn−r−ix

w(r−1)
i+1 (x)

w(r)
i+1(x)

f (r−1)
i+1 (x)

=(1 − qn−r−ix)
w(r−1)

i (x)

w(r)
i (x)

∑r−1
k=0 wi+kPi+k

[
r − 1

k

]
(qn−r−i+1x)k ∏r−1

t=k+1(1 − qn−i−t x)

w(r−1)
i (x)

+ qn−r−ix
w(r−1)

i+1 (x)

w(r)
i+1(x)

∑r−1
k=0 wi+1+kPi+1+k

[
r − 1

k

]
(qn−r−ix)k ∏r−1

t=k+1(1 − qn−i−1−t x)

w(r−1)
i+1 (x)

. (16)

Finally, we can apply Proposition 4 to the numerator of the fractions appearing in (16) using
wiPi as the control points and deduce (15). □

We know present Algorithm 2 for the evaluation of a rational q-Bézier curve.

Algorithm 2 eval.rational

Moreover, we have that the nice properties of the De Casteljau algorithm deduced for
q-Bézier curves are also derived for the rational case.

Corollary 6. All the steps performed in Algorithm 2 for the computation of the intermediate
points f (r)

i (x) are convex combinations of the previously computed points.
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§4. Rational q-Bézier surfaces

Given a matrix of positive weights (wi j)0≤i≤m;0≤ j≤n, a control net (Pi j)0≤i≤m;0≤ j≤n in R3 and
q1, q2 ∈ (0, 1], we define the rational q-Bézier surface

F(x, y) =
m∑

i=0

n∑
j=0

Pi j

wi jbm
i,q1

(x)bn
j,q2

(y)∑m
i=0

∑n
j=0 wi jbm

i,q1
(x)bn

j,q2
(y)

, (x, y) ∈ [0, 1] × [0, 1]. (17)

Let us now see how we can evaluate the surface combining the previous algorithms. The
rational surface defined by (17) can be written as

F(x, y) =

∑m
i=0

[(∑n
j=0

Pi jwi jbn
j,q2

(y)∑n
j=0 wi jbn

j,q2
(y)

) (∑n
j=0 wi jbn

j,q2
(y)

)
bm

i,q1
(x)

]
∑m

i=0

(∑n
j=0 wi jbn

j,q2
(y)

)
bm

i,q1
(x)

, (x, y) ∈ [0, 1] × [0, 1].

In this expression, we see that we can evaluate the surface using the evaluation algorithms
for q-Bézier curves and for rational q-Bézier curves. Let us define the following control points
and weights

Pi(y) :=
n∑

j=0

Pi jwi jbn
j,q2

(y)∑n
j=0 wi jbn

j,q2
(y)

, wi(y) :=
n∑

j=0

wi jbn
j,q2

(y),

for i = 0, . . . , n. After computing these quantities, we can use them to compute the following
rational curve

F(x, y) =
m∑

i=0

Pi(y)
wi(y) bm

i,q1
(x)∑m

i=0 wi(y) bm
i,q1

(x)
.

Hence, we provide Algorithm 3 for the evaluation of the rational surface F(x, y). Let us
notice that Algorithm 3 also provides an evaluation algorithm for q-Bézier surfaces whenever
wi j = 1 for all i = 0, . . . ,m and j = 0, . . . , n. This is the case of tensor product q-Bézier
surfaces.
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