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INDUCED POTENTIAL IN STOCHASTIC
NEWTONIAN DYNAMICS
Jacky Cresson and Laid Boudjellal

Abstract. We derive a stochastic virial theorem and a stochastic Hamilton-Jacobi equa-
tion for Newtonian dynamics over diffusion processes with non constant diffusion term
extending our previous results (J. Cresson and al., J. Math. Phys. 62, 072702 (2021)).

§1. Introduction

The rotation curve of a spiral galaxy is a plot of the orbital speed of visible stars versus their
radial distance from the galaxy’s centre. Based on Newton’s gravitational law, one expects
a decreasing of the orbital velocity with distance. However, experimental curves show that
stars revolve with constant or increasing speed over a large range of distances. Proposals to
capture this effect include an invisible source of mass called "dark matter" (see [10]) or a
modification of Newton’s law of gravity see [8].

In [7], we propose an alternative based on the fact that stochastic processes can be used to
model long term dynamics of stars in a galaxy following a previous work of S. Chandrasekhar
(see [4, 3]). We then assume that the resulting dynamics is obtained through the stochastic
embedding theory developed in [6], leading to a stochastic Newton’s equation. It is proved
that a new potential term called the induced potential appears in the stochastic analogue of the
virial theorem for this equation. This potential is explicitly given as a function of the density
of the process. The density can be compute through the connexion existing between the
stochastic Newton’s equation and the linear Schrödinger equation. For a Kepler’s potential,
using as a solution of the Schrödinger equation the ground state solution representing the
contribution of the central bubble of a spiral galaxy, we compute the induced potential which
corresponds to the ad-hoc "dark potential" used in astrophysics (see [7]).

The "dark potential" is not sufficient in order to reproduce the full complexity of the
rotation curve for a given galaxy. Two strategies can be used to obtain a better agreement:

• first, to use more complex solutions of the Schrödinger equation reproducing more
closely the visible shape of a galaxy for example arms of spiral galaxies and not only
the central bubble following S. Albeverio et al. [1] work on the morphology of galaxies.

• Second, to take into account possible fluctuations of the diffusion coefficient.

In this article, we explore the second possibility by considering stochastic processes
which are isotropic but dependent on space. A stochastic virial theorem is obtained as well as
a stochastic Hamilton-Jacobi equation. In particular, we give the expression of the induced
potential in this case which depends again on the density of the stochastic process. However,
the connection to a (nonlinear) Schrodinger equation is lost and a more general partial differ-
ential equation is obtained. A derivation of the induced potential seems more delicate in this
case.
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§2. Nelson’s stochastic derivatives and the stochastic derivative

We refer to [9, 6] for more details. We denote vectors in R3 with bold letters v ∈ R3 and
components of v with classical letters vi, v = (v1, v2, v3). The usual scalar product in R3 is
denoted by ⟨·, ·⟩. Let X be a stochastic process in R3 of the form

dXi,t = bi(t, Xt) dt + σ(Xt) dWi,t,

for i = 1, . . . , 3 and the Wi,t are independent standard real valued Wiener processes. We
denote by σ the diagonal matrix σ = σ(X) Idd, where Idd is the identity matrix of R3.

A stochastic process of the form (2) is said to be isotropic in space. We denote by D(x)
the quantity

D(x) =
σ2(x)

2
,

associated to the classical diffusion parameter when X reduces to the Brownian motion. Nel-
son’s stochastic derivatives (see [9]) are defined by D+[X] = b(t, X) and D−[X] = b⋆(t, X) =

b(t, X) − 2D(x) − 2
1

pt(X)
D(x)∇[p] where pt is the density of Xt. The stochastic derivative

is defined by (see [6])

D[X] =
(

D+[X] + D−[X]
2

)
− i

(
D+[X] − D−[X]

2

)
.

As a consequence, we obtain D[X] = v − iu with v = v0,σ − ∇(D(x)) and u = u0,σ +∇(D(x))

where v0,σ = b(t, X) −D(x)
∇(pt)

pt
and u0,σ = D(x)

∇(pt)
pt

.

The stochastic derivative has the following properties:

• Chain rule: Let f (t, X) be a real valued function then

D[ f (t, X)] = ∂t f (t, X) + ⟨D[X],∇[ f ]⟩ − i D(X)∆[ f ] = L[X],

the gradient ∇ and the Laplacian ∆ of a function f (t, X) being always taken with respect
to the spatial variables X and the differential operator L is defined by

L[•] = ∂t[•] + ⟨D[X],∇[•]⟩ − iD(X)∆[•].

• Leibniz’s rule: Let X,Y be two real valued stochastic processes then

d
dt

[E (X · Y)] = E
(
D[X] · Y + X · D[Y]

)
,

where the operator D is defined by D[X] = v + iu = D[X] + 2iu.

§3. Stochastic virial theorem and induced potential

In this section, we denote by K the kinetic energy defined for all v ∈ Rd by K(v) =
1
2

m⟨v, v⟩
and U an homogeneous potential of order γ. We look for stochastic processes solution of the
stochastic Newton equation (see [7])

mD [D[X]] = −∇U(X).
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This equation is used as a model for motion of particles of mass m under a potential
force −∇U(X) covering in particular the gravitational case accepting that trajectories can be
non regular and in particular stochastic. As a consequence, we do not had a noise on the
classical Newton’s equation but instead extend the meaning of this equation by extending the
differential calculus under use via the stochastic derivative. This point of view is formalized
in the stochastic embedding theory developed in [6].

When σ is constant, it can be proved [6, 7] that solutions of the stochastic Newton equa-
tion (3) corresponds to Nelson’s diffusion as introduced by E. Nelson in [9]. Existence of
solutions for Nelson’s diffusion were proved by E.A. Carlen in [2] and different notions of
uniqueness are studied by L. Wu [11]. Existence and uniqueness in a more general setting
is open up to our knowledge. Explicit solutions are, as usual, difficult to obtain. However,
qualitative properties of the solutions can be obtain looking for stochastic version of classical
results like the virial theorem or Noether’s theorem.

3.1. A stochastic virial theorem
Theorem 1 (Stochastic virial theorem). Let X be a solution of the stochastic Newton equation
(3), then we have the following equality

D2[m ∥ X ∥2] = 4K(D[X]) − 2γU(X) − i4mD(X) div(D[X]) − i6mD[D(X)].

When σ is constant, we recover the usual stochastic virial theorem proved in [7].

Proof. Let f (X) =∥ X ∥2 with X ∈ R3, then as ∆[ f (X)] = 6 we have D[X2] = 2⟨D[X], X⟩ −
i3σ2(X). As a consequence, we deduce D2

[
mX2

]
= 2mD [⟨D[X], X⟩] − im3D

[
σ2(X)

]
. Using

the chain rule formula, we obtain D
[
σ2(X)

]
= ⟨D[X],∇(σ2)⟩ − i

1
2
σ2∆(σ2). The quantity

D [⟨D[X], X⟩] is decomposed as

D [⟨D[X], X⟩] = D
[
⟨v + iµu, X⟩

]
= D [⟨v, X⟩] − iD [⟨u, X⟩] .

In order to compute D [⟨v, X⟩], we apply the chain rule formula with f (t, X) = ⟨X, v(t, X)⟩.
We have

D [⟨v, X⟩] = ⟨X, ∂tv⟩ + ⟨D[X], v⟩ + ⟨X, ⟨D[X],∇[v]⟩⟩ − iD(X) [2 div(v) + ⟨X,∆[v]⟩] ,

where ∇[v] = (∇(v1), . . . ,∇(v3)) ∈ R3×3, ⟨D[X],∇[v]⟩ = (⟨D[X],∇(v1)⟩, . . . , ⟨D[X],∇(v3)⟩) ∈
Rd and ∆[v] = (∆[v1], . . . ,∆[v3]) ∈ R3. A similar formula is obtained for D [⟨u, X⟩] which
gives

D [⟨u, X⟩] = ⟨X, ∂tu⟩ + ⟨D[X],u⟩ + ⟨X, ⟨D[X],∇[u]⟩⟩ − iD(X) [2 div(u) + ⟨X,∆[u]⟩] .

We deduce that D [⟨D[X], X⟩] is given by

D [⟨D[X], X⟩] = ⟨X,L[D[X]]⟩ + ⟨D[X],D[X]⟩ − iσ2 div(D[X]),

By (2), we have L[D[X]]) = D[D[X]]. As X satisfies the stochastic Newton equation, we
deduce that mD[D[X]] = −∇U(X). As a consequence, we obtain

mD [⟨D[X], X⟩] = −⟨X,∇U⟩ + m⟨D[X],D[X]⟩ − i mσ2 div(D[X]),
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and

D2
[
mX2

]
= −2⟨X,∇U⟩ + 2m⟨D[X],D[X]⟩ − i2 mσ2 div(D[X]) − im 3D

[
σ2(X)

]
.

By the Euler theorem, we have ⟨X,∇U⟩ = γU, where γ is the homogeneity order. As a
consequence, we deduce that

D2
[
mX2

]
= −2γU + 2m⟨D[X],D[X]⟩ − i2 mσ2 div(D[X]) − im3D

[
σ2(X)

]
.

As by definition of the kinetic energy 2m⟨D[X],D[X]⟩ = 4K(D[X]), this completes the proof.
□

3.2. Equilibrium and induced potential

Mimicking the classical case, we say that the system is at equilibrium if D[mX2] = 0. Using
the virial theorem, we deduce that equilibrium is equivalent to

2K(D[X]) = γU(X) + i2mD(X) div(D[X]) + im3D[D(X)].

Using that D[X] = v − iu, we obtain 2K(D[X]) = m(v2 − u2 − 2i⟨v,u⟩) and div(D[X]) =
div[v] − i div[u]. By the chain rule formula

D[D(X)] = ⟨D[X],∇(D(X))⟩ − iD(X)∆[D(X)],
= ⟨v,∇(D(X))⟩ − i [⟨u,∇(D(X))⟩ +D(X)∆[D(X)]] .

We obtain the following set of equations:

Lemma 2. The real part of equation D[mX2] = 0 corresponds to mv2 = γU(X) − Uσ(t, X)
where the potential Uσ(t, X) is called the stochastic induced potential and is defined by

Uσ(t, X) = −m(u2 + 2D(X) div[u]) − m3 (⟨u,∇(D(X))⟩ +D(X)∆(D(X))) .

A more explicit form can be obtained expressing each term as functions of pt and D .

Lemma 3 (Stochastic induced potential). The stochastic induced potential is given by

Uσ = −4mD2
∆

(√
pt

)
√

pt
− m

[
7D⟨∇(D),

∇(pt)
pt
⟩ + 4⟨∇(D),∇(D)⟩ + 5D∆[D]

]
.

When the diffusion coefficient is constant, we recover the classical induced potential ob-
tained in [7]:

U0,σ = −4mD2
∆

(√
pt

)
√

pt
,

which coincides with the Bohm or quantum potential introduced by D. Bohm in his non-
local hidden variable theory for quantum mechanics (see [5], p.168).
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Proof. In order to obtain an explicit form of the stochastic induced potential, one can use the
formula for D[X] in order to explicit u as a function of σ and pt(X). We denote by cσ the
vector of Rd defined by cσ = ∇(D(X)). We have

div[u] = div
[
u0,σ + cσ

]
= ⟨∇ (D(X)) ,

∇(pt)
pt
⟩ +D(X) div

[
∇(pt)

pt

]
+ div(cσ),

= ⟨∇ (D(X)) ,
∇(pt)

pt
⟩ +D(X)

(
−
⟨∇(pt),∇(pt)⟩

p2
t

+
1
pt
∆[pt]

)
+D(X),

and u2 = u2
0,σ + 2⟨u0,σ, cσ⟩ + c2

σ. As a consequence, one obtains

U0,σ = − m
[
u2

0,σ +
σ4

2pt
∆[pt] −

σ4

2
⟨∇(pt),∇(pt)⟩

p2
t

]
− m

[
2⟨u0,σ, cσ⟩ + c2

σ + σ
2⟨∇(D),

∇(pt)
pt
⟩ +D∆[σ2]

]
,

= − mσ4
∆

(√
pt

)
√

pt
− m

[
σ2⟨∇(σ2),

∇(pt)
pt
⟩ + ⟨∇(D),∇(D)⟩ +D∆[σ2]

]

Moreover, we have ⟨u,∇(σ2)⟩ = D⟨
∇(pt)

pt
,∇(σ2)⟩ + 2⟨∇(D),∇(D)⟩ which gives

⟨u,∇(σ2)⟩ +D∆[σ2] = D⟨
∇(pt)

pt
,∇(σ2)⟩ + 2⟨∇(D),∇(D)⟩ +D∆[σ2].

We finally obtain

Uσ = −mσ4
∆

(√
pt

)
√

pt
− m

[
7D⟨∇(D),

∇(pt)
pt
⟩ + 4⟨∇(D),∇(D)⟩ + 5D∆[D]

]
.

This concludes the proof. □

§4. Action functional and the stochastic Hamilton-Jacobi equation

In the constant diffusion case, we prove in [7] following a previous result of E. Nelson [9]
that if Xt is a solution of the stochastic Newton’s equation then the stochastic derivative of X
is a gradient, meaning that the stochastic derivative can be written as

D[X] =
∇[A ](t, Xt)

m
,

where the complex valued functional A (t, X) = S (t, X) + iR(t, X) is called the action func-
tional. Defining the function

ψ(t, X) = eiA (t,X)/2mD ,

called the wave function, we prove that ψ is a solution of the (linear) Schrödinger equation.
In this Section, we study what is preserved from this construction in the non-constant

diffusion case.
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4.1. Explicit conditions for a gradient stochastic derivative
In the constant diffusion case, solutions X of the stochastic Newton equation satisfy the gra-
dient conditions (4). This is trivial for the u component but follows from the reality of the
right-hand side of the stochastic Newton equation for v (see [7],§.6, Lemma 5). A necessary
condition ensuring that u and v are gradient is given by the curl-conditions curl(v) = 0 and
curl(u) = 0. We have the following result:

Lemma 4 (Gradient conditions). Let X be a solution of the stochastic Newton equation. The
curl-conditions are satisfied if and only if ∇[D] ∧ ∇[p] = 0 and curl(b) = 0.

Proof. We have u = ∇[D]+D∇[ln(p)]. We then have using the identity curl(ϕa) = ϕ curl(a)+
∇[ϕ] ∧ a that curl(u) = curl(D∇[ln(p)]) = D curl(∇[ln(p)]) + ∇[D] ∧ ∇[ln(p)] = ∇[D] ∧
∇[ln(p)]. For v, the curl-condition reads curl(v) = curl(b − D∇[ln(p)] − ∇[D]) = curl(b).
The curl conditions then imply that one must have ∇[D]∧∇[ln(p)] = 0 and curl(b) = 0. This
concludes the proof. □

The second condition is directly satisfied if X has a gradient drift. As ∇[p] , 0, the first
condition is satisfied if ∇[D] = 0 or ∇[D] = λ∇[p] for λ ∈ R. If σ is constant then the first
condition is automatically satisfied.

4.2. Stochastic Hamilton-Jacobi equation
We assume that the gradient condition are satisfied. We then obtain a generalization of the
stochastic Hamilton-Jacobi proved in [7]:

Theorem 5 (Stochastic Hamilton-Jacobi equation). The action functional A satisfies the
equation

∇

[
∂tA +

1
2m
⟨∇[A ],∇[A ]⟩ + iD∆[A ] + U

]
= −i∆[A ]∇[D].

The proof follows exactly the same lines as in [7]. When σ is constant, then D is constant

and D∇ [∆[A ]] = ∇[D∆[A ]]. Equation (5) reduces to ∂tA +
1

2m
⟨∇[A ],∇[A ]⟩+iD∆[A ] =

−U obtained in [7].

4.3. A Schrödinger equation
The function ψ satisfies a partial differential equation given by:

Theorem 6. The function ψ satisfies for all j = 1, . . . , 3, the non linear partial differential
equation

∂x j (A(D , ψ) + B(D , ψ)) = ∂x j (D)∆[D ln(ψ)],

where
A(D , ψ) =

1
ψ

[
−iD∂t(ψ) + (D)2∆[ψ] +

U
2m

ψ
]

and

B(C,D , ψ) = ln(ψ)
(
D∆[D] + 2D(1 + ln(ψ))

⟨∇[D],∇[ψ]⟩
ψ ln(ψ)

+ ln(ψ)⟨∇[D],∇[D]⟩
)
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When D is constant, we have B = 0 and we recover the fact that ψ satisfies the linear
Schrödinger equation (see [7]):

−imD∂t(ψ) − mD2∆[ψ] + Uψ = 0.

The density pt(x) of the process X is related to the modulus of ψ as follows:

Lemma 7. Let ρ(x, t) =| ψ(x) |2 then ∇[D ln(ρ)] =
∇[D p]

p
.

When σ is constant then ρ = p.

Proof. We have ψψ̄ = e
i
(A − ¯A )

2mD and as a consequence ψψ̄ = e
R

mD so that ln(| ψ |2) =
R

mD
and ∇[mD ln(| ψ |2)] = ∇[R] which gives ∇[mD ln(| ψ |2)] = u. As ρ = ψψ̄ and using

the expression of u =
∇[D p]

p
, we then obtain ∇[D ln(ρ)] =

∇[D p]
p

.This concludes the

proof. □

4.4. Proof of theorem 6
We have mDX = ∇[A ] by definition and as A = −i2mD ln(ψ), we deduce that DX =
−2i∇[D ln(ψ)]. The stochastic Newton equation mD2X = −∇[U] then reads as

D
[
−i2m∇[D ln(ψ)]

]
= −∇[U].

We compute the left hand side using the chain rule formula for D. We have for all j ∈
{1, . . . , 3}, that

D
[
−i∂x j [D ln(ψ)]

]
= −i

(
∂t

(
∂x j [ln(ψ)]

)
+ ⟨DX,∇[∂x j [D ln(ψ)]]⟩ − iD∆[∂x j [D ln(ψ)]

)
.

We now compute each term of the right hand side. Assuming enough regularity, the Schwartz
lemma ensure that ∂t

(
∂x j [D ln(ψ)]

)
= ∂x j (∂t[D ln(ψ)]). Moreover, we have

⟨DX,∇[∂x j [D ln(ψ)]]⟩ = −i∂x j⟨∇[D ln(ψ)],∇[D ln(ψ)]⟩.

For the third term, we easily have that

−iD∆[∂x j [D ln(ψ)] = −iD∂x j∆[D ln(ψ)] = ∂x j (−iD∆[D ln(ψ)]) + i∂x j (D)∆[D ln(ψ)].

Regrouping these terms, we obtain

D
[
−i∂x j [D ln(ψ)]

]
= ∂x j (−i∂t[D ln(ψ)] + ⟨∇[D ln(ψ)],∇[D ln(ψ)]⟩ +D∆[D ln(ψ)])

− ∂x j (D)∆[D ln(ψ)].

The stochastic Newton equation is then equivalent to

∂x j

(
−i∂t[D ln(ψ)] + ⟨∇[D ln(ψ)],∇[D ln(ψ)]⟩ +D∆[D ln(ψ)] +

U
2m

)
−∂x j (D)∆[D ln(ψ)] = 0
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We can explicit the term in the ∂x j part. We have using the fact that D does not depend on t

that ∂t[D ln(ψ)] = D
∂t(ψ)
ψ

. Moreover, as ∇(D ln(ψ)) = ∇[D] ln(ψ) +D
∇[ψ]
ψ

, we obtain

⟨∇[D ln(ψ)],∇[D ln(ψ)]⟩

= (ln(ψ))2⟨∇[D],∇[D]⟩ +
D2

ψ2 ⟨∇[ψ],∇[ψ]⟩ + 2
D ln(ψ)

ψ
⟨∇[D],∇[ψ]⟩.

Properties of the Laplacian implies that

∆[D ln(ψ)] = ln(ψ)∆[D] +D∆[ln(ψ)] +
2
ψ
⟨∇[D],∇[ψ]⟩.

As ∆(ln(ψ)) =
∆[ψ]
ψ
−
⟨∇[ψ],∇[ψ]⟩

ψ2 , we finally obtain

∆[D ln(ψ)] = ln(ψ)∆[D] +
D∆[ψ]
ψ

−
D

ψ2 ⟨∇[ψ],∇[ψ]⟩ +
2
ψ
⟨∇[D],∇[ψ]⟩.

As a consequence, we have, regrouping first terms depending on ψ and D , and then terms
depending on ∇[D] or ∆[D] that

−i∂t[D ln(ψ)] + ⟨∇[D ln(ψ)],∇[D ln(ψ)]⟩ +D∆[D ln(ψ)] +
U
2m
= (I) + (II) + U

where the terms (I) and (II) are respectively defined by

(I) = −iD
∂t(ψ)
ψ
+

D2

ψ2 ⟨∇[ψ],∇[ψ]⟩ +D

(
D∆[ψ]
ψ

−
D

ψ2 ⟨∇[ψ],∇[ψ]⟩
)
,

=
D

ψ

[
−i∂t(ψ) +D∆[ψ]

]
,

and

(II) =
(
(ln(ψ))2⟨∇[D],∇[D]⟩ + 2

D ln(ψ)
ψ
⟨∇[D],∇[ψ]⟩

)
+ D

(
ln(ψ)∆[D] +

2
ψ
⟨∇[D],∇[ψ]⟩

)
,

= ln(ψ)
(
D∆[D] + 2D (1 + ln(ψ))

⟨∇[D],∇[ψ]⟩
ψ ln(ψ)

+ ln(ψ)⟨∇[D],∇[D]⟩
)
.

This concludes the proof.

§5. Conclusion and perspectives

The generalization of the theory developed in [7] to study stochastic Newtonian dynamics
does not lead to a tractable evaluation of the induced potential due to the complexity of
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the partial differential equation satisfied by the wave function whose modulus is the density
of a solution. An alternative would be to follow the approach suggested by A. Albeverio
and al. in [1] where in a framework similar to [7], they are able to reproduce the Hubble
morphology classification of galaxies by considering suitable combination of solutions of the
linear Schrodinger equation.
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