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EFFICIENT NUMERICAL ALGORITHMS
FOR SEMILINEAR SINGULARLY

PERTURBED CONVECTION-DIFFUSION
SYSTEMS
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Abstract. In this work we introduce a technique to develop robust and efficient numerical
methods for solving semilinear parabolic singularly perturbed systems which are coupled
by suitable nonlinear reaction terms. We pay special attention to systems where the small
diffusion parameters have different orders of magnitude; this feature provokes that over-
lapping boundary layers appear in their solutions close to the outflow boundary. Our
proposal combines a linearized version of the fractional implicit Euler method together
with a splitting by components, to discretize in time, and the upwind finite difference
scheme defined on appropriate piecewise uniform meshes of Shishkin type, to discretize
in space. It is proven and checked that the proposed numerical algorithms are uniformly
convergent.
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§1. Introduction

In this paper we deal with the numerical solving of one dimensional semilinear parabolic sin-
gularly perturbed convection-diffusion systems, coupled by nonlinear reaction terms, given
by 

∂u
∂t

(x, t) +Lx,ε(t)u(x, t) +A(x, t,u) = 0, (x, t) ∈ Q,

u(0, t) = g0(t),
u(1, t) = g1(t), t ∈ [0,T ],
u(x, 0) = φ(x), x ∈ (0, 1),

(1)

where Q ≡ (0, 1) × (0,T ], the spatial differential operator Lx,ε(t) is defined as

Lx,ε(t)u ≡ −Dε
∂2u
∂x2 + B(x)

∂u
∂x
, (2)

with u = (u1, u2)T , the diffusion matrix isDε = diag(ε1, ε2), the convection matrix is B(x) =
diag(b11(x), b22(x)), the nonlinear reaction terms are A(x, t,u) = (a1(x, t,u), a2(x, t,u))T , the
boundary conditions are g0(t) = (g1,0(t), g2,0(t))T , g1(t) = (g1,1(t), g2,1/t))T and the initial
condition is φ(x) = (φ1(x), φ2(x))T .
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We assume that the diffusion parameters εk, k = 1, 2, can be very small and, in general,
they can have different order of magnitude. We will suppose that the equations of (1) have
been ordered in such a way that 0 < ε1 ≤ ε2 ≤ 1; as well, we assume that the coefficients
of the convection matrix satisfy bkk(x) ≥ β > 0, k = 1, 2, and that the components of the
reaction termA satisfy

L ≥
∂ak

∂uk
(x, t, v) ≥ 0, −L ≤

∂ak

∂u j
(x, t, v) ≤ 0, k , j, k, j = 1, 2, ∀ v ∈ R2 and

min
v∈R2

n∑
j=1

∂ak

∂u j
(x, t, v) ≥ 0, k = 1, 2.

(3)

Singularly perturbed convection-diffusion coupled systems model many physical phe-
nomena like, for instance, convection-diffusion enzyme models, tubular models in chemical
reactor theory or neutron transport problems with diffusion coefficients (see [6]). The same
type of problems as (1) were considered in some previous papers (see for instance [2, 7, 5]);
in those papers a numerical uniformly convergent method was constructed. In this work, we
develop a numerical method following similar ideas to those ones in [2], where the main
improvement is focused on reducing the computational cost of the algorithm, which is even
more remarkable when nonlinear problems are considered.

Henceforth, C denotes a generic positive constant independent of the diffusion parameters
εk, k = 1, 2 and the discretization parameters N and M.

§2. Asymptotic behavior of the exact solution

In this section we describe briefly the behavior of the solution of (1) and its derivatives, paying
special attention to the overlapping boundary layers which appear in the outflow boundary x =
1. This knowledge is essential to construct appropriate special meshes which are capable of
capturing a reliable approximation of such exact solution, even in the areas of rapid variation
for it. The key to do that consists of rewriting the continuous problem as a linear convection
diffusion problem of the form



∂u
∂t

(x, t) −Dε
∂2u
∂x2 (x, t) + B(x)

∂u
∂x
+ Â(x, t)u = −A(x, t, 0), (x, t) ∈ Q,

u(0, t) = g0(t), t ∈ (0,T ],
u(1, t) = g1(t), t ∈ (0,T ],
u(x, 0) = φ(x), x ∈ [0, 1],

(4)

where Â(x, t) is an adequate reaction matrix. Using this fact, we can reproduce the analy-
sis made in [2] to know in detail the behavior of the exact solution as well as those of its
derivatives which are involved in the analysis of the uniform convergence of the numerical
method. Concretely, we obtain the following estimates for the partial derivatives of the two
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components of the exact solution∣∣∣∣∣∣∂ku j

∂tk

∣∣∣∣∣∣ ≤ C, k = 0, 1, 2, j = 1, 2,∣∣∣∣∣∣∂ku1

∂xk

∣∣∣∣∣∣ ≤ C
(
1 + ε−k

1 Bε1 (x) + ε−k+1
2 Bε2 (x)

)
, k = 1, 2,∣∣∣∣∣∣∂3u1

∂x3

∣∣∣∣∣∣ ≤ C
(
ε−1

1 + ε
−3
1 Bε1 (x) + ε−2

2 Bε2 (x)
)
,∣∣∣∣∣∣∂ku2

∂xk

∣∣∣∣∣∣ ≤ C
(
1 + ε−k

2 Bε2 (x)
)
, k = 1, 2,∣∣∣∣∣∣∂3u2

∂x3

∣∣∣∣∣∣ ≤ Cε−1
2

(
1 + ε−1

1 Bε1 (x) + ε−2
2 Bε2 (x)

)
,

(5)

being Bγ(x) = e−
β(1−x)
γ .

§3. The fully discrete scheme: uniform convergence

To discretize in space problem (1), we use the classical upwind finite difference scheme on
an adequate piecewise uniform mesh of Shishkin type, Ω

N
≡ {0 = x0 < x1 < . . . < xN = 1},

which is defined as follows (see [4]). Let N be a positive integer multiple of 3. From previous
section we know that the exact solution has overlapping regular boundary layers at x = 1;
then, we define the transition parameters

σε2 = min {2/3, σ0ε2 ln N}, σε1 = min
{
σε2/2, σ0ε1 ln N

}
, (6)

which separate the coarse and the fine mesh, where σ0 is a constant to be fixed later, and the
grid points are given by

xi =


iH, i = 0, . . . ,N/3,
xN/3 + (i − N/3)hε2 , i = N/3 + 1, . . . , 2N/3,
x2N/3 + (i − 2N/3)hε1 , i = 2N/3 + 1, . . . ,N,

(7)

with H = 3(1−σε2 )/N, hε2 = 3(σε2 −σε1 )/N, hε1 = 3σε1/N. We denote by hi = xi− xi−1, i =
1, . . . ,N, and hi = (hi + hi+1)/2, i = 1, . . . ,N − 1.

Let us denote by ΩN the subgrid of Ω
N

composed only by the interior points of it, i.e., by
Ω

N ⋂
Ω, by [v]ΩN (analogously [v]ΩN for scalar functions) the restriction operators, applied

to vector functions defined on Ω, to the mesh ΩN . For all xi ∈ Ω
N , we introduce the semidis-

cretization approach UN(t) ≡ (UN
i (t)), i = 1, . . . ,N − 1, with UN

i (t) ≡ (U1,i,U2,i)T ≈ u(xi, t),
as the solution of the following Initial Value Problem

dUN

dt
(t) +LN

ε U
N

(t) +AN(t,UN(t)) = 0N , in ΩN × (0,T ],

UN
0 (t) = g0(t), in [0,T ],

UN
N(t) = g1(t), in [0,T ],

UN(0) = [φ(x)]ΩN ,

(8)
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where U
N

(t) is the natural extension to Ω
N
× [0,T ] of the semidiscrete functions UN(t), de-

fined on ΩN × [0,T ], by adding the corresponding boundary data. As well, LN
ε (t) is the

discretization of the operator Lx,ε(t) using the upwind scheme, i. e.,

(LN
ε U

N
)k,i = r−k,iU

N
k,i−1 + r+k,iU

N
k,i+1 + rc

k,iU
N
k,i, (9)

with
r−k,i =

−εk

hihi
−

bkk(xi)
hi

, r+k,i =
−εk

hi+1hi
, rc

k,i = −(r−k,i + r+k,i), (10)

and
(AN(t,UN))k,i = ak(xi, t,UN

i ), (11)

for k = 1, 2 and i = 1, . . . ,N − 1.
To complete the definition of our numerical algorithm, we apply an appropriate time

integrator to the semidiscrete problems (8). Let us consider, for simplicity, a constant time
step τ = T/M; let us denote UN,m ≡ (UN,m

i ), i = 1, . . . ,N −1, where UN,m
i ≡ (UN,m

1,i ,U
N ,m
2,i )T are

the numerical approaches of u(xi, tm), i = 1, . . . ,N − 1 at tm = mτ, for m = 0, 1, . . . ,M and let
us denote U

N,m
≡ (UN,m

i ), i = 0, . . . ,N. Next, we describe the fully discrete scheme:

Initialize

U
N,0
= [φ]

Ω
N ,

For m = 0, 1, . . . ,M − 1,

First fract. step
UN,m+1/3

0 = UN,m
0 ,

UN,m+1/3 − UN,m

τ
+AN(tm,UN,m) = 0N , i = 1, . . . ,N − 1,

UN,m+1/3
N = UN,m

N
Second fract. step

UN,m+2/3
2,i = UN,m+1/3

2,i , i = 0, . . . ,N,
UN,m+2/3

1,0 = g1,0(tm+1),

UN,m+2/3
1,i − UN,m+1/3

1,i

τ
+ (LN

ε U
N,m+2/3

)1,i = 0, i = 1, . . . ,N − 1,

UN,m+2/3
1,N = g1,1(tm+1),

Third fract. step
UN,m+1

1,i = UN,m+2/3
1,i , i = 0, . . . ,N,

UN,m+1
2,0 = g2,0(tm+1),

UN,m+1
2,i − UN,m+2/3

2,i

τ
+ (LN

ε U
N,m+1

)2,i = 0, i = 1, . . . ,N − 1,

UN,m+1
2,n = g2,1(tm+1).

(12)

Observe that the advance in time with (12) only requires the resolution of tridiagonal lin-
ear systems. Consequently, we obtain a remarkable reduction of the computational cost when
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we compare our proposal with classical implicit methods. In [1], we perform in detail the
numerical analysis of our method. Next, we include the main result of uniform convergence
for it.

Theorem 1. (Uniform convergence). Assuming that u ∈ C4,2(Q), the global error associated
to the numerical method defined by (12) on the Shishkin mesh defined by (6) and (7), satisfies

max
0≤m≤M

∥UN,m − [u(x, tm)]
Ω

N ∥
Ω

N ≤ C
(
N−1 ln N + M−1

)
, (13)

where the constant C is independent of the diffusion parameters and the discretization pa-
rameters N and M.

§4. Numerical tests

In this section we show the numerical results obtained with the algorithm for some test prob-
lems of type (1). All the experiments have been performed in a PC with an Intel(R) Core(TM)
i5-3470 running at @ 3.20 GHz processor with four cores. Although the algorithm admits an
easy parallel programming, the computations have been performed using only one core using
GNU Fortran with optimisation -O2. The tridiagonal linear systems involved in our method
are solved by using our own implementation of the Thomas algorithm.

The data for the first test problem are given by

T = 1, b11(x) = 4 − 3 sin(x), b22(x) = 2 + xex,

a1(x, t,u) = 2u1 + t2(cos(u2) − u2) + x + t, a2(x, t,u) = t2e−u1 + 3u2 + sin(xt),
φ(x) = (0, 0)T , g0(t) = (t3, t sin(t))T , g1(t) = (t(1 − e−t), t(1 − cos(t)))T .

(14)

Figure 1 displays the numerical approximation for both components, showing the overlapping
boundary layers at x = 1. As the exact solution is unknown, to approximate the maximum
errors for each component uk, k = 1, 2, defined as

max
0≤m≤M

max
0≤i≤N

|Um
N,i,k − uk(xi, tm)|, k = 1, 2,

we use the double-mesh principle (see [3] for instance), which calculates

dN,M
ε,k = max

0≤m≤M
max
0≤i≤N

|Um
N,i,k − Û2m

2N,2i,k |, dN,M
k = max

ε
dN,M
ε,k , k = 1, 2, (15)

to approximate the errors, where {Ûm
2N, j} is the numerical solution on a finer mesh {(x̂ j, t̂m)}

which has the mesh points of the coarse mesh and their midpoints. From the double-mesh
approximated errors we obtain the corresponding numerical orders of convergence in a usual
way by

pk = log(dN,M
ε,k /d2N,2M

ε,k )/ log 2, puni
k = log(dN,M

k /d2N,2M
k )/ log 2, k = 1, 2. (16)

Table 1 shows the errors and their corresponding orders of convergence for some values
of diffusion parameter ε2, when ε1 belong to the set

R = {ε1; ε1 = ε2, 2−2ε2, . . . , 2−32},
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Figure 1: Components 1 (left) and 2 (right) of problem (14) for ε1 = 10−4, ε2 = 10−2 with
N = 48,M = 32.

Table 1: Maximum errors and orders of convergence for problem (14)
ε2 N=24 N=48 N=96 N=192 N=384 N=768

7.5693E-2 5.7289E-2 3.4214E-2 1.8453E-2 9.5637E-3 4.8730E-3
2−6 0.4019 0.7437 0.8907 0.9482 0.9728

2.0611E-1 1.5558E-1 1.0291E-1 6.9919E-2 4.3333E-2 2.5761E-2
0.4058 0.5962 0.5576 0.6902 0.7503

8.4013E-2 6.3795E-2 3.7467E-2 1.9933E-2 1.0229E-2 5.1703E-3
2−8 0.3972 0.7678 0.9104 0.9625 0.9843

2.0783E-1 1.5723E-1 1.0388E-1 7.0511E-2 4.3722E-2 2.5930E-2
0.4025 0.5980 0.5590 0.6895 0.7537

8.5952E-2 6.5867E-2 3.8609E-2 2.0519E-2 1.0530E-2 5.3268E-3
2−10 0.3840 0.7706 0.9120 0.9625 0.9832

2.0826E-1 1.5766E-1 1.0413E-1 7.0672E-2 4.3758E-2 2.5911E-2
0.4015 0.5984 0.5592 0.6916 0.7560

8.6393E-2 6.6412E-2 3.8922E-2 2.0681E-2 1.0615E-2 5.3722E-3
2−12 0.3795 0.7709 0.9123 0.9622 0.9825

2.0837E-1 1.5777E-1 1.0419E-1 7.0709E-2 4.3835E-2 2.6190E-2
0.4013 0.5986 0.5593 0.6898 0.7430

... ... ... ... ... ... ...

... ... ... ... ... ... ...
8.6535E-2 6.6596E-2 3.9034E-2 2.0737E-2 1.0644E-2 5.3878E-3

2−24 0.3778 0.7707 0.9125 0.9621 0.9823
2.0600E-1 1.5515E-1 1.0326E-1 6.8339E-2 4.2211E-2 2.5037E-2

0.4090 0.5874 0.5955 0.6951 0.7535
dN,M

1 8.6535E-2 6.6596E-2 3.9034E-2 2.0737E-2 1.0644E-2 5.3878E-3
puni

1 0.3778 0.7707 0.9125 0.9621 0.9823
dN,M

2 2.0839E-1 1.5779E-1 1.0421E-1 7.0721E-2 4.3848E-2 2.6210E-2
puni

2 0.4012 0.5985 0.5593 0.6896 0.7424

and for different values of the discretization parameters N and M = N/3, taking σ0 = 1 in (6).
For each value of ε2 the first two rows show the errors and the numerical orders associated
with the first component u1 and the following two rows these ones associated to the second
component u2. From it, we observe numerical orders of convergence tending to one according
with the theoretical results.

An important aspect of the constructed algorithm is related with the reduction of the
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computational cost; to see that, we compare the CPU times when solving (14) with a classical
method and our algorithm for some values of N,M = N/3, and fixed values of the diffusion
parameters. The classical method combines the implicit Euler method to discretize, on a
uniform mesh, in time, which is well known does not decouple the components of the system,
with the upwind finite difference scheme defined on the same piecewise uniform Shishkin
mesh as before. In this case, to obtain the numerical approximation of both components a
nonlinear system must be solved at each time step; for that, we use the Newton’s method with
the following stopping criterion

∥Um,k+1
N − Um,k

N ∥ ≤ 10−1 min{M−2,M−1N−1 ln N}, (17)

being Um,k
N the approximation of Um

N given by the iteration k of the Newton’s method. In all
cases, the initial iteration of the Newton’s method is taken as Um,0

N = Um−1
N .

Table 2 shows the maximum errors and their corresponding orders of convergence, ob-
tained for the same values of the diffusion parameters as before, but now using the classical
method. From Tables 1 and 2 it is observed that the maximum errors and the orders of
convergence are similar; nevertheless there are remarkable differences respect to their com-
putational costs. Table 3 shows the required CPU times in seconds using the algorithm (12)
and the classical method described previously, and also the speed-ups that we define as the
quotients between the CPU times of the classical method and the corresponding ones to our
method. From them, we exhibit that our algorithm is considerably faster than the classical
one, as it was expected.

To show that the technique can be extended to systems with more equations, we have
chosen a system with three equations for a second test; such system, whose exact solution is
again unknown, is given by



∂u1

∂t
− ε1

∂2u1

∂x2 + (8 + 3 cos(x))
∂u1

∂x
+ 3u1 + t2(cos(u2) − u2)te−u3 + sin(x + t) = 0,

∂u2

∂t
− ε2

∂2u2

∂x2 + (2 + ex)
∂u2

∂x
+ t2e−u1 + 5u2 − sin(u3) − cos(xt) = 0,

∂u3

∂t
− ε3

∂2u3

∂x2 + (5 + x sin(x))
∂u3

∂x
+ t cos(u1) + e−u2 + 10u3 + x + t2 = 0,

u(0, t) = u(1, t) = (10t sin(t), 10 cos(t)(1 − e−t), 10 sin2(t))T , t ∈ [0, 1],

u(x, 0) = (sin(πx), x(1 − x), x cos(πx/2))T , x ∈ [0, 1].

(18)

Figure 2 displays the numerical approximation for the three components, showing the over-
lapping boundary layers at x = 1.

Now, to construct the piecewise uniform Shishkin mesh, we use the transition parameters

σε3 = min
{1

2
, σ0ε3 ln N

}
, σε2 = min

{2σε3

3
, σ0ε2 ln N

}
, σε1 = min

{σε2

2
, σ0ε1 ln N

}
, (19)
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Table 2: Maximum errors and orders of convergence for problem (14) using the classical
method

ε2 N=24 N=48 N=96 N=192 N=384 N=768
8.5241E-2 6.1352E-2 4.0172E-2 2.4831E-2 1.4705E-2 8.4205E-3

2−6 0.4744 0.6109 0.6941 0.7558 0.8044
7.1611E-2 5.9692E-2 4.4385E-2 3.0394E-2 1.9768E-2 1.2047E-2

0.2627 0.4275 0.5463 0.6206 0.7146
8.5221E-2 6.1374E-2 4.0210E-2 2.4851E-2 1.4711E-2 8.4188E-3

2−8 0.4736 0.6101 0.6942 0.7564 0.8052
7.3975E-2 6.1253E-2 4.5310E-2 3.1052E-2 2.0164E-2 1.2278E-2

0.2723 0.4349 0.5451 0.6229 0.7157
8.5266E-2 6.1443E-2 4.0270E-2 2.4893E-2 1.4736E-2 8.4330E-3

2−10 0.4727 0.6095 0.6939 0.7564 0.8052
7.4597E-2 6.1666E-2 4.5556E-2 3.1229E-2 2.0271E-2 1.2341E-2

0.2746 0.4368 0.5448 0.6235 0.7159
8.5281E-2 6.1465E-2 4.0289E-2 2.4907E-2 1.4744E-2 8.4378E-3

2−12 0.4725 0.6094 0.6938 0.7564 0.8052
7.4753E-2 6.1770E-2 4.5618E-2 3.1273E-2 2.0298E-2 1.2357E-2

0.2752 0.4373 0.5447 0.6236 0.7160
... ... ... ... ... ... ...
... ... ... ... ... ... ...

8.5278E-2 6.1471E-2 4.0296E-2 2.4912E-2 1.4747E-2 8.4395E-3
2−24 0.4723 0.6093 0.6938 0.7564 0.8052

7.2245E-2 5.8948E-2 4.3842E-2 2.9347E-2 1.9279E-2 1.1851E-2
0.2934 0.4271 0.5791 0.6062 0.7020

dN,M
1 8.5286E-2 6.1473E-2 4.0296E-2 2.4912E-2 1.4747E-2 8.4395E-3
puni

1 0.4724 0.6093 0.6938 0.7564 0.8052
dN,M

2 7.4793E-2 6.1795E-2 4.5632E-2 3.1283E-2 2.0304E-2 1.2361E-2
puni

2 0.2754 0.4374 0.5447 0.6236 0.7160

Table 3: CPU times and speed-ups for problem (14) with ε2 = 2−16 and ε1 = 2−20

N=192 N=384 N=768 N=1536 N=3072
splitting 0.01562 0.07312 0.31250 1.26562 5.06250
classical 0.40625 1.60937 6.43750 25.73437 103.03125

speed-ups 26.00832 22.00998 20.60000 20.33409 20.351851

and, taking N a positive integer multiple of 3, the grid points are given by

x j =


jH, j = 0, . . . ,N/2,
xN/2 + ( j − N/2)hε3 , j = N/2 + 1, . . . , 2N/3,
x2N/3 + ( j − 2N/3)hε2 , j = 2N/3 + 1, . . . , 5N/6,
x5N/6 + ( j − 5N/6)hε1 , j = 5N/6 + 1, . . . ,N,

where hε1 = 6σε1/N, hε2 = 6(σε2 − σε1 )/N, hε3 = 6(σε3 − σε2 )/N, H = 2(1 − σε3 )/N.
To complete the numerical algorithm, we use again a linearly implicit method of type

“splitting-by-components”, which now has four fractionary steps, being the first one explicit.
We use again the double mesh principle to estimate the maximum errors. Table 4 shows
the maximum errors and their corresponding numerical orders of convergence for the three
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Figure 2: Components of problem (18) for ε1 = 10−5, ε2 = 10−3, ε3 = 10−1, with N =
48,M = 32 (left up u1, right up u2, bottom u3.)

components, choosing some values of ε3, of the discretization parameters N and M = N/2
and σ0 = 1 in (19). Besides ε2 covers the set R2 = {ε2; ε2 = ε3, 2−2ε3, . . . , 2−22} and ε1
the set R1 = {ε1; ε1 = ε2, 2−2ε2, . . . , 2−26}. For each value of ε3, the first and second rows
correspond to errors and orders for the first component, the third and the fourth ones to the
second component and the fifth and sixth ones to the third component. From it, we observe
uniform convergence of almost first order.

We compare again the CPU times of our method and the same classical method as in
the first example, when solving the problem (18) for some values of N,M = N/2, and fixed
values for the diffusion parameters εi, i = 1, 2, 3. We have used the same stopping criterion
given in (17) for the Newton’s method. Table 5 shows the required CPU time in seconds using
our algorithm and the classical method. From it, we see a higher speed up for our algorithm
respect to the classical one, due to the increase of the number of equations, as it was expected.
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Table 4: Maximum errors and orders of convergence for problem (18)
ε3 N=36 N=72 N=144 N=288 N=576 N=1152

3.3023E-1 3.0252E-1 2.6316E-1 1.8947E-1 1.3010E-1 8.1556E-2
0.1264 0.2011 0.4739 0.5423 0.6738

3.0569E-1 2.4313E-1 1.6402E-1 1.1439E-1 7.1461E-2 4.2542E-2
2−6 0.3303 0.5678 0.5199 0.6788 0.7483

6.8311E-1 5.8837E-1 4.3311E-1 2.9840E-1 1.9115E-1 1.1521E-1
0.2154 0.4420 0.5375 0.6425 0.7305

3.3046E-1 3.0254E-1 2.6324E-1 1.8952E-1 1.3013E-1 8.1574E-2
0.1273 0.2007 0.4740 0.5423 0.6738

3.0660E-1 2.4372E-1 1.6433E-1 1.1459E-1 7.1580E-2 4.2602E-2
2−8 0.3311 0.5687 0.5200 0.6789 0.7486

6.9180E-1 5.9395E-1 4.3608E-1 3.0065E-1 1.9247E-1 1.1597E-1
0.2200 0.4458 0.5365 0.6435 0.7308

3.3052E-1 3.0255E-1 2.6327E-1 1.8953E-1 1.3014E-1 8.1579E-2
0.1276 0.2006 0.4741 0.5423 0.6738

3.0666E-1 2.4389E-1 1.6442E-1 1.1466E-1 7.1625E-2 4.2627E-2
2−10 0.3304 0.5689 0.5200 0.6788 0.7487

6.9312E-1 5.9446E-1 4.3643E-1 3.0079E-1 1.9261E-1 1.1610E-1
0.2215 0.4458 0.5370 0.6430 0.7304

3.3053E-1 3.0255E-1 2.6327E-1 1.8954E-1 1.3015E-1 8.1580E-2
0.1276 0.2006 0.4741 0.5424 0.6738

3.0647E-1 2.4370E-1 1.6442E-1 1.1462E-1 7.1564E-2 4.2621E-2
2−12 0.3306 0.5677 0.5206 0.6795 0.7477

6.8962E-1 5.9079E-1 4.3474E-1 2.9893E-1 1.9176E-1 1.1572E-1
0.2232 0.4425 0.5403 0.6405 0.7287

... ... ... ... ... ... ...

... ... ... ... ... ... ...
3.3053E-1 3.0255E-1 2.6328E-1 1.8954E-1 1.3015E-1 8.1581E-2

0.1276 0.2006 0.4741 0.5424 0.6738
2.8003E-1 2.1899E-1 1.5344E-1 1.0148E-1 6.2995E-2 3.7185E-2

2−18 0.3548 0.5131 0.5966 0.6878 0.7605
6.4356E-1 4.8540E-1 3.2835E-1 2.1755E-1 1.3564E-1 7.9586E-2

0.4069 0.5639 0.5939 0.6816 0.7692
dN,M

1 3.3053E-1 3.0255E-1 2.6328E-1 1.8954E-1 1.3015E-1 8.1581E-2
puni

1 0.1276 0.2006 0.4741 0.5424 0.6738
dN,M

2 3.0666E-1 2.4389E-1 1.6442E-1 1.1466E-1 7.1625E-2 4.2627E-2
puni

2 0.3304 0.5688 0.5200 0.6788 0.7487
dN,M

3 6.9312E-1 5.9446E-1 4.3643E-1 3.0079E-1 1.9261E-1 1.1610E-1
puni

3 0.2215 0.4458 0.5370 0.6430 0.7304

Table 5: CPU times and speed-ups for problem (18) with ε3 = 2−12, ε2 = 2−16 and ε1 = 2−20

N=144 N=288 N=576 N=1152 N=2304
splitting 0.04680 0.17160 0.62400 2.51161 9.90606
classical 1.20121 4.75803 18.90732 75.20808 301.28473

speed-ups 25.66688 27.72744 30.30019 29.94417 30.41418
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