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SOME TECHNIQUES FOR THE
STABILISATION OF THE PRESSURE

DISCRETISATION IN REDUCED ORDER
MODELS OF INCOMPRESSIBLE FLUIDS
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Gómez Mármol, Samuele Rubino

Abstract. We address the stability of the pressure discretisation for Reduced Order Mod-
els (ROMs) of incompressible flows. For Galerkin discretisations of incompressible flu-
ids, the stability of the pressure is guaranteed through the discrete inf-sup condition for
the duality velocity - pressure gradient. This property can be extended to ROMs by adding
velocity “supremisers" (the Riesz representation of the pressure gradient on the velocity
space, cf. [6]). However it is rather costly and several alternative strategies can be carried
on. Among them, stabilisation techniques (cf. [1]) or post-processing of the pressure (cf.
[4]), that we present here.
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§1. Motivation: pressure stabilisation in ROM

We intend to solve parametric incompressible flow problems, either in laminar or turbulent
regimes, with very fast procedures. We actually consider the Smagorinsky turbulence model
for incompressible flows. This is the basic Large Eddy Simulation (LES) turbulence model,
that solves the large scales of the flow and a part of the inertial spectrum. It is intrinsically
linked to a discretisation grid, the sub-grid scale effects are modelled by means of an eddy
diffusion term. For simplicity, we introduce it here as a continuous model, where the grid
appears in parametric form. Let us consider a bounded domain Ω ⊂ IRd (d = 2 or 3), and
consider a triangulation Th of Ω. We consider the problem: Find u : Ω × (0,T ) −→ Rd and
p : Ω × (0,T ) −→ R such that:

∂tu + (u · ∇)u − ∇ · ((ν + νt)∇u + ∇p = f in Ω × (0,T ),
∇ · u = 0 in Ω × (0,T ),

u(x, 0) = u0(x) in Ω.
(1)

(plus boundary conditions), where the eddy viscosity is given by

νt =
∑
K∈Th

C2
S h2

K |∇u|κT ,
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where CS = 0.2 is a universal constant, hK denotes the diameter of element K ∈ Th and κK

is the characteristic function of K. The Navier-Stokes equations, that govern incompressible
flow in laminar regime, correspond to νt = 0.

We actually consider Reduced Order Modelling (ROM), that provides speeds up of com-
puting time typically ranging from tens to thousands. The discretisation of the pressure should
be specifically treated, as the standard techniques to build ROMs do not ensure that the pres-
sure discretisation in the ROM is stable. Further, this stabilisation treatment could produce a
loss of accuracy.

We start from a standard discretisation, for instance a mixed discretisation by finite el-
ements (“Full Order Model", FOM). We consider homogeneous Dirichlet boundary condi-
tions to avoid non-essential difficulties: Find (uh, ph) : (0,T ) −→ Xh × Qh such that for any
(uh, qh) ∈ Xh × Qh,

d
dt

(uh, uh) + b(uh,uh, uh) + ((ν + νt)∇uh,∇uh) − (ph,∇ · uh) = ( f , uh) inD′(0,T )

(∇ · uh, qh) = 0,
uh(0) = u0h,

(2)
The pair of discrete spaces (Xh,Qh) ⊂ H1

0(Ω)d × L2(Ω)/IR is assumed to satisfy the discrete
inf-sup condition: There exists β > 0 such that

β ∥qh∥L2(Ω) ≤ sup
uh∈Xh

(qh,∇ · uh)
∥uh∥H1(Ω)d

, ∀qh ∈ Qh.

The standard numerical analysis of mixed problems ensures that the discrete problem is well
posed, in particular the pressure is bounded in L2(Ω).

1.1. The Reduced Order Model
Assume we have constructed a pair of velocity-pressure spaces Xr,Qs of very low dimension
(the “Reduced Spaces") that approximates the varieties {uh(t), t ∈ [0,T ]} and {ph(t), t ∈
[0,T ]}, respectively. We then consider the ROM discretisation:
Find (ur, ps) : (0,T ) −→ Xr × Qs s. t. for any (φ, qs) ∈ Xr × Qs,

d
dt

(ur,φ) + b(ur,ur,φ) + ((ν + νt)∇ur,∇φ) − (ps,∇ · φ) = ( f ,φ) inD′(0,T ),

(∇ · ur, qs) = 0,
ur(0) = u0r,

(3)

The reduced pressure ps may eventually be eliminated if the reduced velocities of Xr are
weakly divergence-free.

A very popular technique to construct the reduced spaces is the Proper Orthogonal De-
composition (POD). It starts from velocity “snapshots" χv = span

{
u1

h, . . . ,u
N
h

}
⊂ Xh, from

the solution of the FOM at discrete times tn, n = 1, . . . ,N (and similarly for pressure). The
POD builds an optimal subspace Xr = span

{
φ1, . . . ,φr

}
that provides the best approximation

of the velocity snapshots with respect to the discrete l2(H) norm (whereH is some subspace
of H1(Ω)d orH = L2(Ω)d), among all sub-spaces of χv of dimension r. The POD projection
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error is given by
∥∥∥∥{un

h − ΠHun
h

}N

n=0

∥∥∥∥2

l2(Hv)
=

N∑
i=r+1

λi, where the λi are the eigenvalues of the

correlation matrix
[

(un
h, um

h )H
]N

n,m=1
and ΠH is the orthogonal projection on H . Typically,

the λi decrease with exponential rate so if r << N, Xr provides a very good approximation of
Xh.

1.2. The reduced pressure treatment
Similary, the POD provides a reduced space for pressure Qs ⊂ Qh with dim(Qs) << dim(Qh).
However, there are no reasons for the pair of spaces (Xr,Qs) to satisfy the discrete inf-sup
condition, and consequently the pressure discretisation on Qs besides the velocity discretisa-
tion on Xh is unstable. Att present, the standard way to overcome this difficulty (cf. [6]) is
to enrich the velocity space Xr with the Riesz representatives in Xh of the reduced pressure
gradients ∇qs in the H1

0(Ω)d-H−1(Ω)d duality,

ψs(qs) ∈ Xh, (∇ψs,∇uh)L2(Ω) = ⟨∇qs, uh⟩Ω) = −(qs,∇ · uh)Ω, ∀uh ∈ Xh. (4)

ψs(qs) also is a supremizer in Xh of the normalised duality
⟨∇qs, uh⟩Ω
∥∇uh∥L2(Ω)

. The pair of spaces

(Xs
r ,Qs) satisfies the discrete inf-sup condition, where Xs

r is the enriched space

Xs
r = Xr ∪ {ψs(qs), ∀qs ∈ Qs}. (5)

However, this requires reduced velocity spaces with larger dimension.

1.3. Reduced pressure recovery
As the reduced velocities are weakly divergence free (second equation in (3)), the reduced
velocity can be decoupled from that of the reduced pressure. The pressure can be recovered
in a two-step solution of the ROM:
Step 1: Computation of the reduced velocity. Find ur : (0,T ) −→ Xr s. t. for any φ ∈ Xr,

d
dt

(ur,φ) + b(ur,ur,φ) + ((ν + νt)∇ur,∇φ) = ( f ,φ) inD′(0,T ),

ur(0) = u0r.

Note that this problem can be formulated as three independent ordinary differential systems,
one for each velocity component.
Step 2: Computation of the reduced pressure. Several methods are available, depending
on the pressure equation used, either Pressure gradient equation or Poisson pressure equation.
The pressure gradient equation is directly obtained from the Navier-Stokes equations,

∇p = −∂tu − (u · ∇)u + ∇ · ((ν + νt)∇u) − f in Ω × (0,T ).

The reduced pressure can be recovered by testing with the Riesz transformed-enriched re-
duced velocity space: ps(t) ∈ Qs satisfies,∀φr ∈ Xs

h,

−(ps(t),∇ · φr)L2(Ω) =
d
dt

(ur(t),φr) − b(ur(t); ur,φr) − ((ν + νt)∇u(t),∇φr) − ( f (t),φr),
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This provides a stable recovery of the pressure. Also, l2(L2) error estimates for the pressure
hold in terms of the eigenvalues corresponding to the neglected modes (cf. [5])

An alternative procedure is to build a pressure Poisson equation, by testing the Navier-
Stokes equations with pressure gradients. This yields Find ps ∈ Qs such that, for all qs ∈ Qs,∑

K∈Th

τK(∇pr,∇qs)K = −
∑
K∈Th

τK(∂tur + ur · ∇ur − ∇ · ((ν + νt)∇ur) − f ,∇qs)K . (6)

Here, the τK are stabilisation coefficients of order h2
K . This equation implies a discretisation

of the natural boundary conditions for pressure,

∂n pr = (∂tur + ur · ∇ur − ∇ · ((ν + νt)∇ur) − f ) · n on ∂Ω.

This provides a stable recovery of the pressure. For Navier-Stokes equations (νt = 0), er-
ror estimates for the pressure in terms of the sums of the eigenvalues corresponding to the
neglected modes in velocity in H1(Ω) norm, as well as in pressure in the norm ∥p∥h =(∑N−1

i=1 h2
K ∥∇p∥20,K

)1/2
, are proved in [4]. When d = 3, with truncated convection velocity

in (6) to h−1
K in 3D; that is, the term ur · ∇ur is changed into ũr · ∇ur, where ũr is a truncated

approximation to ur with L∞(Ω) norm smaller than Constant × h−1
K .

§2. Local Projection Stabilisation (LPS) Reduced Basis model.

The Local Projection Stabilisation provides an alternative way of stabilising the pressure
discretisation, both in the FOM and the ROM models, with further reduction of computational
cost. We state it in terms of the Reynolds number ℜ = UL/ν with U and L a characteristic
velocity and length of the flow. We discretise these equations by: Find Uh = (uh, ph) ∈
Xh × Qh such that for all Vh = (vh, qh) ∈ Xh × Qh it holds

A(Uh; Uh,Vh;ℜ) = ⟨ f , vh⟩ (7)

where A(Z; U,V;ℜ) = AConv(Z,U,V) + ADi f (U,V;ℜ) + ADiv(U,V) + APres(U,V), with

AConv(Z,U,V) =
∫
Ω

(z · ∇u)v dΩ, ADi f (U,V;ℜ) =
∫
Ω

(
1
ℜ
+ νt(ℜ,u)

)
∇u : ∇v dΩ,

ADiv(U,V) =
∫
Ω

[
(∇ · u)q − (∇ · v)p

]
dΩ, APres(U,V) =

∫
Ω

τp σ
∗
h (∇p)σ∗h(∇q) dΩ.

Here, σ∗h = Id − σh is a fluctuation operator, σh is a restriction operator from L2(Ω) to
a coarse-grid FE space. Also, τp(x) = τK , ∀x ∈, ∀K ∈ Th, where τK = O(h2

K) is the
stabilisation coefficient. The pressure stabilisation term APres(U,V) controls the small scale

components of ∇p that are not represented in Xh by
∫
Ω

(∇ · v)p dΩ. Actually,

∥ph∥ = sup
v∈Qh

(∇ · v, ph)
∥v∥H1

0 (Ω)d
+

(∫
Ω

τp

∣∣∣σ∗h(∇p)
∣∣∣2 dΩ

)1/2

is a norm on Qh equivalent to the L2(Ω) norm.
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2.1. Construction of Reduced Basis by Greedy Algorithm
We intend to approximate the parametric variety {U(ℜ), ℜ ∈ D = [ℜ1,ℜ2]}. We build a
“Reduced Basis”(as an alternative to the reduced space provided by the POD), by means of a
greedy algoritm, as follows. For simplicity of notation, we set Y = H1

0(Ω)d × L2(Ω):

1. Initialization.

• Choose a discrete set of parametersDtrain that approximatesD.
• Randomly choose ℜ1 ∈ Dtrain and set B1 = Uh(ℜ1) = (uh(ℜ1), ph(ℜ1)),

Y1 = Span{B1}.

2. Enrichment. Assuming known BN−1, compute

ℜN = argmaxℜ∈Dtrain
∥UN−1(ℜ) − Uh(ℜ)∥Y

and set
BN = {BN−1,Uh(ℜN)}, YN = Span{BN}.

For evolution problems a further reduction of the discrete space by POD is needed. That is,
onceℜN is chosen, we define

B̃N = {BN−1,Uh(ℜN , t1), · · · , ,Uh(ℜN , tM)},

where t1, · · · , tM are the time steps. Then BN is obtained from the POD analysis of the
elements of B̃N , by retaining the more energetic modes up to a preset level.

The Greedy Algorithm is oriented to minimize the distance in L∞(D, X) between the
reduced and the trust solutions. In practice, the exact error ∥UN(ℜ) −UFOM(ℜ)∥Y is approx-
imated by an a-posteriori estimator ∆N . The greedy algorithm to construct the reduced basis
with the error estimator instead of the exact error is called “weak" greedy algorithm.

2.2. Reduced basis problem with LPS treatment of Pressure
The Reduced Basis spaces YN = XN × QN are constructed by a weak greedy algorithm using
the error estimator ∆N(µ). The corresponding reduced problem, that now we state for the
Smagorinsky turbulence model, is then set as follows: Compute UN(ℜ) = (u, p) ∈ YN by

A∗(UN(ℜ),VN ;ℜ) = F(VN) ∀VN ∈ YN , (8)

where the form A∗ is an approximation of the form A constructed by replacing νT (z;ℜ) and
τp(x) by reduced approximations ν∗T (z;ℜ) and τ∗p(x), obtained by means of the empirical
interpolation method (EIM). The stability of the reduced problem is ensured as

∥ph∥ = sup
v∈XN

(∇ · v, ph)
∥v∥H1

0 (Ω)d
+

(∫
Ω

τp(x)
∣∣∣σ∗h(∇p)

∣∣∣2 dΩ
)1/2

again is a norm on the reduced pressure space MN for suitable choices of the projection
operator σh (cf. [3]).
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§3. A posteriori error estimation

In this section we discuss the construction of the a posteriori error indicator ∆N(ℜ) that we
use to build the reduced basis for problem (8). We use the Brezzi-Rappaz-Raviart theory for
approximation of branches of non-singular solutions of non-linear problems [2]. The building
of the error indicator is based upon the Lipschitz continuity of the tangent operator (cf. [3]):

Theorem 1. There exists a positive constant ρT such that∣∣∣∂1A(U1
h ,Vh;ℜ)(Zh) − ∂1A(U2

h ,Vh;ℜ)(Zh)
∣∣∣ ≤ ρT ∥U1

h − U2
h∥X∥Zh∥Y ∥Vh∥Y ,

for all U1
h ,U

2
h ,Zh,Vh ∈ Yh.

Let ⟨R(UN(ℜ),ℜ),Vh⟩ = F(Vh;ℜ)−A(UN(ℜ),Vh;ℜ) be the residual of the trial solution
UN(ℜ) ∈ YN , βN be the uniform (in parameter) coercivity constant of ∂1A(UN(ℜ)), given by

βN = min
ℜ∈D

sup
VN∈YN

∂1A(UN(ℜ),Vh;ℜ)
∥VN∥Y

,

and τN(ℜ) =
4ρT

β2
N

∥R(·;ℜ)∥Y ′h . Then it holds

Theorem 2. If βN > 0 and τN(ℜ) ≤ 1, then there exists a unique solution Uh(ℜ) to (FE)
such that (

2
ρT

βN
+ τN

)−1

∆N(ℜ) ≤ ∥Uh(ℜ) − UN(ℜ)∥Y ≤ ∆N(ℜ)

with ∆N(ℜ) =
βN

2ρT

[
1 −

√
1 − τN(ℜ)

]
.

This estimate means that the norm of the error in the natural space Y = H1
0(Ω)d × L2(Ω) is

driven by the dual error of the residual
∥∥∥R(UN(ℜ),ℜ)

∥∥∥
Y ′h

, which is amplified in terms of the
Lipschitz continuity and the coercivity of the tangent Smagorinsky operator ∂1A(UN(ℜ),·;ℜ).
The condition τN(ℜ) ≤ 1 holds if the residual of the trial solution UN(ℜ) is small enough. If
not, we still may use a linearised form of ∆N(ℜ) as a function of τN(ℜ).

§4. Numerical results

This section deals with the application of the LPS stabilised reduced basis approximation of
the steady Smagorinsky model.

We actually compare its performances with the reduced basis method constructed with
the spaces (Y ′N ,QN) obtained by adding to the reduced velocity space YN the supremisers
of the gradients of the pressure basis functions of QN , in the same way as the space Xs

r is
obtained from Xr by (5).

We consider the 2D lid-driven cavity flow, with the following computational setting

• Domain: Ω = (0, 1) × (0, 1).

• Boundary conditions: u = 0 at the bottom and lateral boundaries, u = 1 on the cavity
lid.



Pressure stabilisation in ROMs 81

Figure 1: FE (left) and RB (right) velocity solution forℜ = 4521
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(b) Supremisers stabilisation

Figure 2: Convergence history of Greedy algorithm for LPS and Supremisers stabilisation of
pressure

• Reynolds range: ℜ ∈ [1000, 5100]

• Velocity-pressure finite element pair: (P2 − P2) (non inf-sup stable).

• Regular mesh (2601 nodes and 5000 triangles)

This corresponds to 30.603 degrees of freedom (dof) for the FOM (finite element discreti-
sation). The EIM approximations of the eddy viscosity ν∗T and of the stabilised coefficients
τ∗ respectively require 52 and 48 dofs. The reduced velocity-pressure spaces are of dimen-
sion 32 for the LPS stabilised method, and of 48 for the supremisers stabilised method. This
last dimension is necessarily larger, as we include the pressure gradient supremisers in the
reduced velocity basis.

In Figure 1 we compare the velocity FOM solution with the ROM solution obtained with
the LPS stabilised reduced method. We observe a very small error among both. Figure 2
shows the convergence history of the Greedy algorithm for both ROMs (with LPS (left) and
supremisers (right) pressure stabilisation). A uniform decay of both the estimators and the
dual residual norm is observed, with a decrease velocity similar for both methods.

Figure 3 shows the comparison of the decay of errors in natural norms between the full
order and the reduced order solutions, for pressure (left) and velocity (right), as the dimension
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Figure 3: Comparison of errors between pressure and velocity for LPS and Supremisers
stabilisation of pressure
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Figure 4: A posteriori error bounds at N = Nmax. The parameterℜ is denoted by µ.

of the reduced spaces increases. We observe quite close error levels for both ROMs.
In Figure 4 we compare the actual true error with the estimated error for the full range

of ℜ ∈ D, for both reduced methods. We observe that the ROMs with supremiser pressure
stabilisation behave more smoothly than the ROM with LPS pressure stabilisation, while the
efficiencies (error/estimator rate) are typically of two orders of magnitude.

In Table 1 we present the error levels and the computing times when solving the Smago-
rinsky model with both ROMs for some test values of the parameter ℜ that are not used
to build the reduced basis. We observe quite similar error levels, with computing times for
the LPS stabilised method nearly 30% below the computing times required by the supremis-
ers stabilised method. We obtain speeds-up of several thousand for both methods, with an
increased speed-up for the LPS stabilised method.

§5. Conclusions

In this work we have described several techniques to treat the pressure discretisation in re-
duced order modelling of incompressible flows. Besides a post-processing to recover the
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LPS stabilisation

Data ℜ = 1610 ℜ = 2751 ℜ = 3886 ℜ = 4521
TFE 2259.04s 3008.81s 4756.93s 6171.41s
Tonline 0.7s 0.75s 0.78s 0.81s
speedup 3227 4011 7146 7619
∥uh − uN∥H1 5.4 · 10−7 1.44 · 10−6 1.49 · 10−6 5.44 · 10−6

∥ph − pN∥L2 1.34 · 10−8 3.35 · 10−8 1.55 · 10−7 2.25 · 10−8

Supremiser stabilisation

Data ℜ = 1610 ℜ = 2751 ℜ = 3886 ℜ = 4521
TFE 2259.04s 3008.81s 5574.5s 6171.41s
Tonline 0.99s 1.03s 1.26s s 1.23s
speedup 2267 2895 4391 5016
∥uh − uN∥H1 4.94 · 10−7 4.51 · 10−6 6.52 · 10−7 3.52 · 10−6

∥ph − pN∥L2 5.23 · 10−8 3.22 · 10−8 6.38 · 10−8 8.45 · 10−8

Table 1: Comparison of errors and speeds-up of computing time for ROMs with LPS and
supremiser pressure stabilisation.

pressure from ROMs that initially only compute the velocity, we have reviewed the construc-
tion of a reduced basis approximation of the Smagorinsky turbulence model, in which the
pressure discretisation is stabilised by the Local Projection Stabilisation technique. The re-
duced basis is built by a greedy algorithm based upon an error indicator specifically built for
this discretisation.

Some numerical tests for 2d lid-driven cavity flow show that the LPS stabilised ROM
error levels are quite close to those obtained with today standard reduced methods to solve
incompressible flow problems, with enhanced reduction of the computing times.
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