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NUMERICAL STUDY OF A DIFFUSION
EQUATION WITH VENTCEL BOUNDARY
CONDITION USING CURVED MESHES

Fabien Caubet, Joyce Ghantous and Charles Pierre
Abstract. In this work is provided a numerical study of a diffusion problem involving a
second order term on the domain boundary (the Laplace-Beltrami operator) referred to as
the Ventcel problem. A variational formulation of the Ventcel problem is studied, leading
to a finite element discretization. The focus is on the resort to high order curved meshes
for the discretization of the physical domain. The computational errors are investigated
both in terms of geometrical error and of finite element approximation error, respectively
associated to the mesh degree r ≥ 1 and to the finite element degree k ≥ 1. The numerical
experiments we led allow us to formulate a conjecture on the a priori error estimates
depending on the two parameters r and k. In addition, these error estimates rely on the
definition of a functional lift with adapted properties on the boundary to move numerical
solutions defined on the computational domain to the physical one.
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Introduction

Motivation. On the one hand, in various situations, we have to numerically solve a problem
(a partial differential equation) on a non-polygonal geometry. This requires the use of high
order meshes in order to well approximate it. On the other hand, in several industrial appli-
cations, objects or materials surrounded by a thin layer with potentially other properties (typ-
ically a surface treatment or corrosion) have to be considered. The presence of this layer cau-
ses some difficulties while discretizing the domain and numerically solving the problem. To
overcome this problem, the domain is approximated asymptotically by an other one without a
thin layer but equipped with artificial boundary conditions, like Ventcel boundary condition.
The physical properties of the thin layer are then contained in the boundary condition.

This paper focuses on the resolution of a problem involving higher order boundary condi-
tion and numerically evaluates the a priori error produced by a finite element approximation
on higher order meshes, distinguishing the geometrical error from the approximation error.

The Ventcel problem and its approximation. Let Ω be a domain in Rd, d = 2, 3, with a
smooth boundary Γ. The Laplace-Beltrami operator on Γ is denoted by ∆Γ. Relatively to the
source terms f and g and to the constants κ ≥ 0, α, β > 0, the Ventcel problem reads, −∆u + κu = f in Ω,

−β∆Γu + ∂nu + αu = g on Γ,
(1)
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with n the external unit normal to Γ and ∂nu the normal derivative of u along Γ. The theoret-
ical properties of the solution of problem (1) have been studied in [10].

Due to the presence of the second order term in the boundary condition, the domain Ω
is required to be smooth and thus non-polygonal: from the numerical point of view, the
computational domain Ωh (the mesh domain) will not fit the physical one: Ωh , Ω. In a
context of finite element methods of high order k ≥ 2, it then is necessary to resort to high
order meshes of geometrical degree r ≥ 2 to preserve the numerical solution’s accuracy.
Some methods have been widely studied, see, e.g., [7, 6, 5, 14, 12].

The approximation of the Laplace equation on a surface has been studied in this frame-
work by Demlow et al. in [3, 4]. In these works, a distinction is made between the geometri-
cal error induced by the setting of the computational domain Ωh , Ω and the approximation
error related to the finite element method. The purpose of this approach is to highlight the
influence of the geometrical degree r of the mesh and the finite element approximation degree
k on the total computational error. Thereby, one can assess which is the optimal degree of
the finite element method k to chose depending on the choice of the geometrical degree r.
To the authors’ knowledge, no such estimations have been made for the Ventcel problem (1).
Though, in [7], similar estimations are done in the isoparametric case.

In the present context where Ωh , Ω, a crucial issue arises: how does one compare
the numerical solutions uh to the exact one, in order to derive a priori error estimates? To
circumvent this, a lift of uh onto Ω is defined: in [5], Dubois introduced such a lift based
on the orthogonal projection onto the boundary Γ, which further was improved in terms of
regularity by Elliott et al. [7]. This lift however does not fit the orthogonal projection on the
computational domain boundary. An alternative definition is introduced in this paper which
will be used to perform a numerical study of the computational error of problem (1). Better
numerical results are obtained when using the new lift operator, as discussed in Section 3.

Paper organization. In section 1, after introducing some general mathematical tools, is
stated and proven the well-posedness of the Ventcel problem (1). The following section 2
is devoted to the definition of the curved meshes of Ω. In section 3 are presented the dis-
cretization of the Ventcel problem (1), the lift operator which is the keystone of the a priori
error estimations and numerical experiments studying the method convergence rate depend-
ing on the mesh geometrical degree r and on the finite element approximation degree k. The
paper ends with a conclusion section presenting our conjecture on a priori error estimates.

§1. Study of the Ventcel problem

Some mathematical tools. Let us denote Ω a bounded connected open subset of Rd with a
smooth boundary Γ := ∂Ω at least of C2 regularity. The unit normal to Γ pointing outwards
is denoted by n. The classical spaces L2(Ω), L2(Γ), H1(Ω) and H1(Γ) are considered and we
introduce the following Hilbert space and its associated norm (see [10, Lemma 2.5])

H1(Ω,Γ) := {u ∈ H1(Ω), u|Γ ∈ H1(Γ)}, ∥u∥2H1(Ω,Γ) := ∥u∥2H1(Ω) + ∥u|Γ∥
2
H1(Γ).

We consider the classical surface operators (see, e.g., [9, p. 192-196]):
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• the tangential gradient of u ∈ H1(Γ) is given by∇Γu := ∇ũ−(∇ũ·n)n, where ũ ∈ H1(Rd)
is any extension of u;

• the tangential divergence of W ∈ [H1(Γ)]d is divΓW := divW̃ − (DW̃ n) · n, where W̃ ∈
[H1(Rd)]d is any extension of W and DW̃ is the differential of W̃;

• the Laplace-Beltrami operator of u ∈ H2(Γ) is given by ∆Γu := divΓ(∇Γu).
Finally, the following fundamental result is recalled, see, e.g., [2] and [8, §14.6].
Proposition 1. Let Ω and Γ = ∂Ω be as stated previously. Let d : Rd → R be the signed
distance function with respect to Γ defined by,

d(x) :=


−dist(x,Γ) if x ∈ Ω,
0 if x ∈ Γ,
dist(x,Γ) otherwise,

with dist(x,Γ) := inf{|x − y|, y ∈ Γ}.

Then there exists a tubular neighborhood UΓ of Γ where d is a C2 function. Its gradient ∇d
is an extension of the external unit normal n to Γ. Additionally, in this neighborhoodUΓ, the
orthogonal projection b onto Γ is uniquely defined and given by

b : x ∈ UΓ 7−→ b(x) := x − d(x)∇d(x) ∈ Γ.

Well-posedness of problem (1). The weak form of (1) is to find u ∈ H1(Ω,Γ) such that,

∀ v ∈ H1(Ω,Γ), a(u, v) = l(v) :=
∫
Ω

f vdx +
∫
Γ

gvdσ, (2)

where a(·, ·) is defined on H1(Ω,Γ)2 by:

a(u, v) :=
∫
Ω

∇u · ∇vdx + κ
∫
Ω

uvdx + β
∫
Γ

∇Γu · ∇Γvdσ + α
∫
Γ

uvdσ. (3)

Notice that the weak form (2) is equivalent to the system introduced in (1) as it was proven
in [10].
Theorem 2. Let Ω and Γ = ∂Ω be as stated previously. Let α, β > 0, κ ≥ 0, and f ∈ L2(Ω),
g ∈ L2(Γ). Then there exists a unique solution u ∈ H1(Ω,Γ) to problem (2).

The proof of this theorem is classical and is briefly given in [10, th. 3.2]. We detail it here
for the sake of completeness. Let us notice that, additionally, it is proven in [10, th. 3.3] that
there exists a (source term independent) constant c > 0 such that

∥u∥H2(Ω,Γ) ≤ c(∥ f ∥L2(Ω) + ∥g∥L2(Γ)).

Proof. The proof relies on the Lax-Milgram theorem. The linear form l(·) in (2) and the
bilinear form a(·, ·) in (3) being continuous respectively on H1(Ω,Γ) and on H1(Ω,Γ)2, it
remains to show that a is coercive. We must distinguish between two cases.

1) If κ , 0. The result is obvious: for all u ∈ H1(Ω,Γ), a(u, u) ≥ min{1, κ, α, β}∥u∥2H1(Ω,Γ).
2) If κ = 0. We proceed by contradiction assuming that there exists a sequence (un)n∈N∗

in H1(Ω,Γ) such that for all n ≥ 1,

∥∇un∥
2
L2(Ω) + β∥∇Γun∥

2
L2(Γ) + α∥un∥

2
L2(Γ) <

1
n
(
∥un∥

2
H1(Ω) + ∥un∥

2
H1(Γ)

)
.
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It follows that un , 0 for all n ≥ 1. Thus un can be renormalized such that ∥un∥H1(Ω,Γ) = 1 and
it satisfies ∥∇un∥

2
L2(Ω) + β∥∇Γun∥

2
L2(Γ) + α∥un∥

2
L2(Γ) <

1
n . Therefore

∇un → 0 in L2(Ω), ∇Γun → 0 in L2(Γ) and un → 0 in L2(Γ). (4)

Since (un)n is bounded in H1(Ω,Γ), there exists u ∈ H1(Ω,Γ) such that un ⇀ u in H1(Ω,Γ),
and since H1(Ω,Γ) ↪→ L2(Ω,Γ) is a compact injection, we obtain

un → u in L2(Ω,Γ). (5)

Passing to the limit in ∥un∥
2
H1(Ω,Γ) = ∥∇un∥

2
L2(Ω) + ∥∇Γun∥

2
L2(Γ) + ∥un∥

2
L2(Γ) + ∥un∥

2
L2(Ω) = 1,

and using the convergences given in (4) and (5), we obtain ∥u∥2L2(Ω,Γ) = 1. However, since
∇un ⇀ ∇u in L2(Ω), we use (4) and the uniqueness of the limit to obtain ∇u = 0 and, since Ω
is a connected set, it follows that u = C ∈ R. Finally, un → u in L2(Γ) and also un → 0
in L2(Γ), these two points yield u = 0 = C which contradicts ∥u∥L2(Ω,Γ) = 1 and concludes the
proof of the coercivity. □

§2. Curved mesh definition

In this section are defined curved meshes of geometrical degree r ≥ 1 of the domain Ω. From
now on, the domain Ω ⊂ Rd, d =2 or 3, is assumed to be at least Cr+2 regular, and T̂ denotes
the reference simplex of dimension d. The definition steps are the following (see [7, 14, 5]
for more details).

1. Construct an affine mesh T (1)
h of Ω composed of simplexes T .

2. For each T ∈ T (1)
h , a mapping F(e)

T : T̂ → T (e) := F(e)
T (T̂ ) is designed, so that the exact

element T (e) form a curved mesh T (e)
h whose domain exactly fits Ω.

3. For each T ∈ T (1)
h , the mapping F(e)

T is interpolated by a polynomial F(r)
T of degree r.

The associated elements T (r) := F(r)
T (T̂ ) form a curved mesh T (r)

h of degree r of Ω.

Affine mesh. Let T (1)
h be a mesh of Ω made of simplexes of dimension d (triangles or tetra-

hedra), it is chosen as quasi-uniform and henceforth shape-regular (see [1, def. 4.4.13]). The
mesh domain is denoted by Ω(1)

h := ∪T∈T (1)
h

T and its boundary by Γ(1)
h := ∂Ω(1)

h , which is
composed of (d − 1)-dimensional simplexes that form a mesh of Γ = ∂Ω. The vertices of
Γ

(1)
h are assumed to lie on Γ. We define the mesh size h := max{diam(T ); T ∈ T (1)

h }. To each
T ∈ T (1)

h is associated an affine function FT : T̂ → T = FT (T̂ ).

Remark 1. For a sufficiently small h, the mesh boundary satisfies Γ(1)
h ⊂ UΓ, where UΓ is

the tubular neighborhood given in proposition 1. This guaranties that the orthogonal projec-
tion b : Γ(1)

h → Γ is one to one which is required for the construction of the exact mesh.

Example 1. In the two dimensional case is displayed the case of a triangle T ∈ T (1)
h , with

T ∩ Γ = {v1, v2}, together with the mapping FT that maps T̂ into T .



Numerical study of a diffusion equation with Ventcel boundary condition using curved meshes 67

Exact meshT (e)
h . After the early works of Scot [14] and Lenoir [11] defining transformations

towards curved elements, Dubois [5] first introduced a definition based on the orthogonal
projection b onto Γ, further developed by Elliott et al. [7, §4] in terms of regularity, which
definition is recalled here.

Let us first point out that, because of the quasi uniform assumption made on the meshT (1)
h ,

and for h sufficiently small, a mesh element T cannot have d + 1 vertices on the boundary Γ.
We define internal elements as those having at most one vertex on the boundary Γ, whereas
other elements have:
• 2 vertices on the boundary in the two dimensional case;

• 2 or 3 vertices on Γ in the 3D case, forming either an edge or a face respectively.
The case of internal elements is skipped by setting F(e)

T = FT .
Let then T ∈ T (1)

h a non-internal element, denote vi = FT (v̂i) its vertices, v̂i being the
vertices of T̂ , and define εi = 1 if vi ∈ Γ or εi = 0 otherwise. To x̂ ∈ T̂ is associated its
barycentric coordinates λi associated to the vertices v̂i of T̂ . We introduce λ⋆ :=

∑d+1
i=1 εiλi

and ŷ :=
1
λ⋆

∑d+1
i=1 εiλiv̂i ∈ T̂ . The mapping F(e)

T : T̂ → T (e) is given by,

F(e)
T (x̂) := x + (λ⋆)r+2(b(y) − y), with x = FT (x̂) and y = FT (ŷ). (6)

Remark 2. For x ∈ T ∩ Γh, we have that λ⋆ = 1 and so y = x inducing that F(e)
T (x̂) = b(x):

F(e)
T ◦ F−1

T = b on T ∩ Γh which is then mapped on Γ following the orthogonal projection b.
The mapping F(e)

T has been shown in [7] to be Cr+1 regular on T̂ .
Example 2. Consider three triangles T1, T2 and T3 in R2 as displayed below. For i = 1, 2, 3,
we have the following transformation F(e)

Ti
◦ F−1

Ti
that maps Ti ∈ T

(1)
h into T (e)

i as follows,

T1 and T2 are internal and so are unchanged whereas T3 (having 2 vertices on Γ) is not internal
and mapped into a curved triangle with an edge exactly fitting Γ.
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Curved mesh T (r)
h with degree r. Let T ∈ T (1)

h and r ≥ 1, the exact mapping F(e)
T in (6)

is interpolated as a polynomial of degree r in the classical Pr-Lagrange basis on T̂ . The
interpolant is denoted by F(r)

T and we define T (r) := F(r)
T (T̂ ). The curved mesh of degree r

is T (r)
h := {T (r); T ∈ T (1)

h } with domain Ω(r)
h := ∪T (r)∈T

(r)
h

T (r) and with boundary Γ(r)
h := ∂Ω(r)

h .

Note that F(r)
T (v) = F(e)

T (v) for v a Pr-Lagrange node in T̂ .

Example 3. In the quadratic case r = 2 is displayed a border quadratic element T (2). The
mappings F(2)

T and F(e)
T coincide at the P2-Lagrange nodes which are the three vertexes v̂i and

the three edge mid-points êi of T̂ .

§3. Numerical experiments

Functional lift. Here, we define lifts to transform a function on a domainΩ(r)
h or Γ(r)

h (defined
in the previous section) into a function defined on Ω or Γ respectively. Lifts are necessary
for two reasons: to compare the numerical solutions to the exact one and thus perform a
priori error estimates, but also to define the right hand side source terms in the numerical
formulation of problem (1).

A surface lift is obviously provided by the orthogonal projection b : Γ(r)
h → Γ, to vh ∈

L2(Γ(r)
h ) is associated vL

h ∈ L2(Γ) given by vL
h ◦ b = vh.

To define a volume lift, a transformation G(r)
h : Ω(r)

h → Ω is defined and then to uh ∈

L2(Ω(r)
h ) is associated uℓh ∈ L2(Ω) given by uℓh ◦ G(r)

h = uh. The definition of G(r)
h is less

obvious and we describe it here.
In [7], it is given piecewise on all T (r) ∈ T

(r)
h by Gh |T (r) := F(e)

T ◦ (F(r)
T )−1, where T is

the affine element relative to T (r). However, this transformation does not fit the orthogonal
projection b on the mesh boundary. Precisely, following remark 2, for x ∈ Γ(r)

h ∩T (r), Gh(x) :=
b ◦ FT ◦ (F(r)

T )−1(x). As a result the surface and bulk lifts do not coincide on Γ(r)
h : (Tr uh)L ,

Tr(uℓh), where Tr refers to the trace operator.
To avoid this, we propose the following alternative definition of G(r)

h that is given piece-
wise for all T (r) ∈ T

(r)
h by (with the notations of equation (6)),

G(r)
h |T (r)

:= F(e)
T (r) ◦(F(r)

T )−1, F(e)
T (r) (x̂) := x+(λ⋆)r+2(b(y)−y), x = F(r)

T (x̂) and y = F(r)
T (ŷ).

(7)
Geometrically, T (r) is directly transformed into T (e) by F(e)

T (r) ◦ (F(r)
T )(−1), without being first

transformed into T as previously done. Now, for x ∈ F(r)
T ∩ Γ

(r)
h , x̂ = (F(r)

T )(−1)(x) satisfies
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λ⋆ = 1 and so ŷ = x̂ and y = x. So F(e)
T (r) (x̂) = b(x), the volume and surface lifts both coincide

with b on Γ(r)
h and the expected relation,

∀ uh ∈ H1(Ω(r)
h ), (Tr uh)L = Tr(uℓh),

now holds. Consequently, the surface lift vL
h now simply will be denoted by vℓh.

Finite element formulation and implementation. On a mesh T (r)
h is considered the finite

element space,
Vh :=

{
u ∈ C0(Ω(r)

h ), ∀ T ∈ T (r)
h , u|T ◦ F(r)

T ∈ P
k(T̂ )

}
, (8)

with Pk(T̂ ) the polynomials of degree k on T̂ and with k ≥ 1 the finite element degree.
Following [7], the problem (1) is discretized as: find uh ∈ Vh such that,

∀vh ∈ Vh, ah(uh, vh) = lh(vh) :=
∫
Ω

(r)
h

f −ℓ JG(r)
h

dx +
∫
Γ

(r)
h

g−ℓ Jbdσ, (9)

with G(r)
h defined in (7), with f −ℓ := f ◦ G(r)

h and g−ℓ := g ◦ b the inverse lifts of the source
terms in (1), with JG(r)

h
and Jb the Jacobians of G(r)

h and b
Γ

(r)
h

respectively and where ah is the

bilinear form in (3) rewritten on Ω(r)
h and Γ(r)

h .
Finite element space definition, matrix assembling and computation on curved surfaces

are led using the code Cumin [13]. All integral computations rely on quadrature rules on the
reference elements which are always chosen of sufficient order without further details.

Laplace equation on a surface. In order to validate the code, we first draw our attention to-
wards the Laplace equation −∆Γu+u = g on a smooth surface Γ ⊂ R3. We refer to Demlow [3,
4] for the analysis of its finite element formulation. Given a mesh T (r)

h of Γ, following (8),
the Pk-Lagrange finite element space is Wh :=

{
u ∈ C0(Γ(r)

h ), ∀ T ∈ T (r)
h , u|T ◦ F(r)

T ∈ P
k(T̂ )

}
and the discrete problem is: find uh ∈ Wh such that,

∀ vh ∈ Wh,

∫
Γ

(r)
h

∇T uh · ∇T vh dσ +
∫
Γ

(r)
h

uh vh dσ =
∫
Γ

(r)
h

vh g
−ℓ Jb dσ,

with g−ℓ and Jb previously defined in (9). The a priori error estimate for this problem devel-
oped by Demlow reads,

∥u − uℓh∥L2(Γ) = O(hk+1 + hr+1), ∥∇Γ(u − uℓh)∥L2(Γ) = O(hk + hr+1), (10)

for a smooth enough source term g.
We set Γ to the unit sphere and the source term to g(x, y, z) = ey(y + 2)y. Three series of

successively refined meshes, respectively affine, quadratic and cubic, of Γ have been gener-
ated by the software Gmsh1. The numerical errors have been computed for each mesh and
for Pk, with k = 1, . . . , 4.

1Gmsh: a three-dimensional finite element mesh generator, https://gmsh.info/
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Figure 1: Numerical solution of the Laplace equation on a sphere with affine and quadratic
meshes.

∥u − uℓh∥L2(Γ) ∥u − uℓh∥H1(Γ)

P1 P2 P3 P4 P1 P2 P3 P4

Affine mesh (r=1) 1.96 1.96 1.96 1.96 0.99 1.96 1.96 1.96
Quadratic mesh (r=2) 1.98 2.95 3.92 3.92 0.98 1.97 3.00 3.91
Cubic mesh (r=3) 1.98 2.94 3.95 3.92 0.98 1.96 2.96 3.95

Table 1: Convergence order for the Laplace equation on a sphere.

The numerical solution on two coarse meshes is depicted on figure 1, and the measured
convergence orders are reported in table 1. The affine and cubic meshes behave exactly as
expected following (10). In turn, quadratic meshes produce unexpected convergence rates
indicated in red in table 1 and a super convergence is observed. Quadratic meshes display a
geometrical error h4 instead of the expected h3 and thus behave as if r = 3. This behavior has
been further investigated and is not problem dependent. It is also observed for the Poisson
problem on a disk with Neumann or Robin boundary conditions. It is neither caused by
the considered geometry: studying a simpler problem of integral computation on a non-
symmetric and non-convex domain gave the same surprising super convergence. So far we
have no further explanation for this particular error.

Numerical study of the Ventcel problem. The Ventcel problem (1) is considered on the unit
disk Ω with α = β = 1 and κ = 0, with the source terms f (x, y) = −yex and g(x, y) = yex(3 +
4x−y2) corresponding to the exact solution u = − f . The discrete problem (9) is implemented
and solved using the code Cumin [13]. Again, three series of successively refined meshes,
respectively affine, quadratic and cubic, of Ω have been generated with Gmsh. For each mesh
and for Pk finite elements, with k = 1, . . . , 4, four numerical errors are computed (two in the
bulk domain and two on the boundary),

∥u − uℓh∥L2(Ω), ∥∇(u − uℓh)∥L2(Ω), ∥u − uℓh∥L2(Γ) and ∥∇Γ(u − uℓh)∥L2(Γ),

and the estimated convergence rates are reported in the two tables 2 and 3.
The surface errors in table 2 behave exactly the same way as the estimation (10) for the

Laplace equation on a surface: the same super-convergence for the quadratic meshes again
occurs, as if r = 3 in that case. Thus, the numerical solution seems to be correctly computed.
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∥u − uℓh∥L2(Γ) ∥∇Γ(u − uℓh)∥L2(Γ)

P1 P2 P3 P4 P1 P2 P3 P4

Affine mesh (r=1) 2.00 2.03 2.01 2.01 1.00 2.00 1.99 1.98
Quadratic mesh (r=2) 2.00 3.00 4.00 4.02 1.00 2.00 3.00 4.02
Cubic mesh (r=3) 2.00 3.00 4.00 4.24 1.00 2.00 3.00 3.98

Table 2: Convergence order of ∥u − uℓh∥L2(Γ) and of ∥∇Γ(u − uℓh)∥L2(Γ)

∥u − uℓh∥L2(Ω) ∥∇(u − uℓh)∥L2(Ω)

P1 P2 P3 P4 P1 P2 P3 P4

Affine mesh (r=1) 1.98 1.99 1.97 1.97 1.00 1.50 1.49 1.49
Quadratic mesh (r=2) 2.01 3.14 3.94 3.97 1.00 2.12 3.03 3.48
Cubic mesh (r=3) 2.04 2.45 3.44 4.04 1.02 1.47 2.42 3.46

Table 3: Convergence order of ∥u − uℓh∥L2(Ω) and ∥∇(u − uℓh)∥L2(Ω)

The interpretation of the convergence rates for the bulk errors in table 3 is less straight-
forward. The figures in table 3 led us to the following conjecture of the error estima-
tions on Ω, which are not always satisfied in practice: ∥u − uℓh∥L2(Ω) = O(hk+1 + hr+1), and
∥∇(u − uℓh)∥L2(Ω) = O(hk + hr+1/2). Let us discuss every case aside. On the affine mesh, the
conjecture is satisfied. The quadratic mesh acts as if r is taken as 3 instead of 2, as a conse-
quence of the super convergence. Here, the conjecture is satisfied. On the cubic mesh, for the
P2 and P3 cases (red figures in table 3), there is a default of 1/2 compared to the conjecture.
Even-though, the saturation of the convergence rate agrees with the conjecture (see P4 case).

This behavior differs from (10) for the gradient norm where hr+1 is now replaced by
hr+1/2. This difference could be understood from a theoretical point of view following ideas
that should be presented in forthcoming works. Recall that this lift is a modification of the
one defined in [7]. Using the lift given in [7], a saturation of the convergence rate is observed
as follow: 2.5 for the L2(Ω) norm and 1.5 for the gradient L2(Ω) norm, for the quadratic and
cubic meshes. These results are discussed in details in an upcoming work and expose the
benefit of the new lift, defined in this paper.

Conclusion

We have presented an approach in order to numerically solve the Ventcel problem (1) and
have used the code Cumin [13] to give a numerical exploration of the a priori errors using
high order finite elements on curved meshes. This numerical analysis is supported by an alter-
native definition of a lift operator as compared to [7] which improved our numerical results.
Beyond difficulties related to the lift definition, and beyond unexplained super convergence
associated to quadratic meshes, we formulate the following conjecture for the Ventcel prob-
lem a priori numerical errors, the proof of which is detailed in an upcoming work.

Conjecture. Let u ∈ Hk+1(Ω,Γ) be a solution of the variational problem (2), let T (r)
h be a

mesh of Ω with geometrical degree r, let Vh, defined in (8), be the associated finite element
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space of degree k. Then the numerical solution uh ∈ Vh to the discrete problem (9) satisfies,

∥u − uℓh∥L2(Ω) = O(hk+1 + hr+1), ∥∇(u − uℓh)∥L2(Ω) = O(hk + hr+1/2),

∥u − uℓh∥L2(Γ) = O(hk+1 + hr+1), and ∥∇Γ(u − uℓh)∥L2(Γ) = O(hk + hr+1).

References

[1] Brenner, S. C., and Scott, L. R. The mathematical theory of finite element methods.
16,361. Available from: https://doi.org/10.1007/978-1-4757-3658-8.

[2] Dapogny, C., and Frey, P. Computation of the signed distance function to a discrete
contour on adapted triangulation. Calcolo 49, 3 (2012), 193–219. Available from:
https://doi.org/10.1007/s10092-011-0051-z.

[3] Demlow, A. Higher-order finite element methods and pointwise error estimates for
elliptic problems on surfaces. SIAM J. Numer. Anal. 47, 2 (2009), 805–827. Available
from: https://doi.org/10.1137/070708135.

[4] Demlow, A., and Dziuk, G. An adaptive finite element method for the Laplace-Beltrami
operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45, 1 (2007), 421–442.
Available from: https://doi.org/10.1137/050642873.

[5] Dubois, F. Discrete vector potential representation of a divergence-free vector field
in three-dimensional domains: numerical analysis of a model problem. SIAM J. Nu-
mer. Anal. 27, 5 (1990), 1103–1141. Available from: https://doi.org/10.1137/
0727065.

[6] Edelmann, D. Isoparametric finite element analysis of a generalized Robin boundary
value problem on curved domains. SMAI J. Comput. Math. 7 (2021), 57–73.

[7] Elliott, C. M., and Ranner, T. Finite element analysis for a coupled bulk-surface
partial differential equation. IMA J. Numer. Anal. 33, 2 (2013), 377–402. Available
from: https://doi.org/10.1093/imanum/drs022.

[8] Gilbarg, D., and Trudinger, N. S. Elliptic partial differential equations of second order.
Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[9] Henrot, A., and Pierre, M. Variation et optimisation de formes: une analyse
géométrique, vol. 48. Springer Science & Business Media, 2006.

[10] Kashiwabara, T., Colciago, C. M., Dedè, L., and Quarteroni, A. Well-posedness,
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