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BAYESIAN MODELS FOR THE ANALYSIS
OF CLIMATE CHANGE IN DAILY MAXIMUM

TEMPERATURE SERIES
Alejandro Camón, Jorge Castillo-Mateo,

Jesús Asín and Ana C. Cebrián
Abstract. This paper proposes a Bayesian autoregressive model for daily maximum tem-
perature series in the line of Castillo-Mateo et al. (J. Agric. Biol. Environ. Stat. 27,
3, 487–505, 2022). Here, the contribution is to consider the joint temporal modeling of
the mean and variance of a Gaussian likelihood over 63 years in 18 temperature series
located around Aragón, Spain. This model adopts two discrete temporal scales, year and
day within year. For mean and variance it includes linear predictors like harmonic terms
in days within years to capture seasonality, harmonic terms in interaction with a linear
trend to capture seasonally-varying long-term trends, and interaction terms between the
harmonics and the previous day’s temperature to capture seasonally-varying persistence
or serial correlation. The model is fitted using a Hamiltonian Monte Carlo algorithm with
the Stan software, this algorithm returns posterior predictive samples to study the features
of temperature of interest.

Keywords: autoregression, Bayesian model, Stan, time series, variance model.
AMS classification: 62F15, 62J05, 62M10, 62P12.

§1. Introduction

Climate change research is nowadays a hotspot [7], particularly in regards to estimating
changes in temperature distribution or its mean [8]. To measure the variability of these
changes, a statistical model for daily temperatures is necessary [10], specifically a model
for daily maximum temperature (Tx).

With the rise of research on Bayesian modeling [1], models for Tx have been devel-
oped, taking into account temporal dynamics and potential relationships with other vari-
ables. Castillo-Mateo et al. [4] proposed a Bayesian spatio-temporal model for Tx during
the warmest months of the year (from May to September). Their model includes a fixed ef-
fects component based on a linear trend in years, harmonic terms for the seasonal component,
and an elevation term. It also includes an autoregressive term to capture persistence from the
previous day’s temperature, and random effects based on temporal and spatial Gaussian pro-
cesses. A limitation of this model is that it assumes a constant variance over time for the daily
local error term, which may not always be valid when working with the whole year.

This study aims to propose a new Bayesian model that can represent the distribution of
Tx throughout the year. Overcoming some of the limitations of the model by Castillo-Mateo
et al. is necessary, particularly by considering a submodel for the variance that depends on
seasonal terms, persistence, or trends.
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Figure 1: Location of the 18 stations in the Iberian Peninsula (left) and Aragón (right).

The outline of the paper is: Section 2 introduces the Tx data and develops an exploratory
analysis, Section 3 proposes the joint model for mean and variance, Section 4 shows results
of applying the model to the Tx data, and final conclusions are summarized in Section 5.

§2. Data and exploratory analysis

The analyzed database includes Tx from 18 Spanish stations around Aragón provided by
AEMET, and it covers the period from 1953 to 2015. The elevation map shown in Figure 1
highlights the location of the 18 stations and the varied topography of the region. This region
is known for its high climatic diversity due to its range of elevations and proximity to the
Mediterranean and Cantabrian seas, as well as nearby mountain ranges. This variability poses
a challenge for modeling daily temperatures, as noted by Castillo-Mateo et al. [4], especially
considering the different patterns of temperature evolution in some areas of the region [8].

The exploratory analysis of the database reveals relevant characteristics that the proposed
statistical model should include. Figure 2(a), showing boxplots of Tx by month in Zaragoza,
confirms the seasonal behavior of temperatures. Similarly, Figure 2(b), showing the boxplots
of temperature anomalies (defined as the difference between Tx and the average Tx for each
day within year), highlights the seasonality of temperature variability, as indicated by the
comparison of interquartile ranges.

Figure 2(c) represents the linear trend fitted to the annual mean temperature in Zaragoza
and La Sotonera. The clearly different slopes across stations indicate the spatial diversity of
the observed warming. Figure 2(c) also includes the linear trend fitted to the monthly mean
temperature in June and September in Zaragoza to show the variability of the warming trend
within the year.

Also persistence in Tx is a fundamental term. To avoid confusion with seasonality, we
estimate the serial correlation on a monthly level at each station. For January data, the min-
imum first-order correlation across stations is 0.62, and the median is 0.70. For June, the
corresponding values are 0.64 and 0.72, respectively.
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Figure 2: Left and center: Boxplots of Tx by month in Zaragoza and its anomalies. Right: Fit-
ted linear trend of the mean annual temperature (dashed) for La Sotonera (red) and Zaragoza
(black), and linear trend of the mean monthly temperature (solid) for Zaragoza, June (black)
and September (red).

Based on the results of the exploratory analysis, we have determined that our model
should incorporate the following effects to accurately capture the temperature patterns with
easily interpretable terms: i) a trend over the years to account for the impact of climate
change, ii) the effect of persistence or the previous day’s temperature to account for temper-
ature inertia in the atmosphere, iii) the seasonal behavior of the mean temperature, the trend
effect, and possibly the persistence, and iv) a non-constant variance over time.

§3. Modeling daily maximum temperature

In this work, we propose a new local model to capture the daily temperature evolution in each
of the 18 stations separately. We augment our model with a submodel that accounts for the
temporal variability of the Tx variance.

Let Ytℓ denote the daily maximum temperature on day ℓ, ℓ = 1, . . . , L within year t,
t = 1, . . . ,T . We assume that Ytℓ has a normal distribution conditioned on a set of covariates,
Xtℓ, including persistence, trend, and seasonality. The notation used for the mean and the
variance submodels on day ℓ within year t are µtℓ and σ2

tℓ, respectively. The first stage of the
model is defined by Ytℓ = µtℓ + ϵtℓ with error term ϵtℓ ∼ N(0, σ2

tℓ). Then, submodels for the
mean and the variance are given by a mean-trend-autoregression structure as

µtℓ = E[Ytℓ | Xtℓ] = γℓ + ϕtℓ + ψtℓ, and σ2
tℓ = Var[Ytℓ | Xtℓ] = exp{γσℓ + ϕ

σ
tℓ + ψ

σ
tℓ}, (1)

where γℓ and γσ
ℓ

are independent terms expressed with harmonic terms—mean—, ϕtℓ and ϕσtℓ
are long-term trends that interact with harmonics—trend—, and ψtℓ and ψσtℓ are autoregressive
components that also interact with harmonics—autoregression. In particular,

γℓ = β0 +

N∑
i=1

(
βi,sS iℓ + βi,cCiℓ

)
, ϕtℓ =

α0 +

Nα∑
i=1

(
αi,sS iℓ + αi,cCiℓ

) t,

ψtℓ =

ρ0 +

Nρ∑
i=1

(
ρi,sS iℓ + ρi,cCiℓ

) Ytℓ−1,

(2)
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with analogous structure for the variance but adding a superscript σ for notational purposes.
For example, β0 in the variance model is denoted by βσ0 .

We make the following remarks:

• Days are indexed by ℓ = 1, . . . , L, where L = 366 for leap years and L = 365 otherwise.

• Year t = 1 corresponds to 1953 and T = 63 to 2015.

• For notational convenience, Yt0 = Yt−1366 if t − 1 is a leap year and Yt0 = Yt−1365
otherwise. Y11 is considered known.

• The harmonic terms are Ciℓ = cos(2πi(ℓ − 1)/366) and S iℓ = sin(2πi(ℓ − 1)/366).

• N,Nα,Nρ,Nσ,Nσ
α ,N

σ
ρ are the number of harmonic functions used in each component

of the submodels. These restrictions are imposed: Nα,Nρ ≤ N and Nσ
α ,N

σ
ρ ≤ Nσ.

• The set of covariates is Xtℓ = (t,Ytℓ−1, S 1ℓ,C1ℓ, S 2ℓ,C2ℓ, . . . , SNℓ,CNℓ), with N =
max(N,Nσ).

• The vectors of parameters are:

θ = (β0, β1,s, β1,c, . . . , βN,s, βN,c, α0, α1,s, α1,c, . . . , αNα ,s, αNα ,c, ρ0, ρ1,s, ρ1,c, . . . , ρNρ ,s, ρNρ ,c),

θσ = (βσ0 , β
σ
1,s, β

σ
1,c, . . . , β

σ
Nσ ,s, β

σ
Nσ ,c, α

σ
0 , α

σ
1,s, α

σ
1,c, . . . , α

σ
Nσ
α ,s
, ασNσ

α ,c
, ρσ0 , ρ

σ
1,s, ρ

σ
1,c, . . . , ρ

σ
Nσ
ρ ,s
, ρσNσ

ρ ,c
).

3.1. Model fitting and residuals
Due to the complexity of the proposed Bayesian model, the use of Markov Chain Monte
Carlo (MCMC) algorithms is necessary to obtain samples from the joint posterior distribu-
tion. More precisely, we use the Hamiltonian Monte Carlo (HMC) algorithm implemented
in the package RStan [2, 9]. The HMC algorithm uses the derivatives of the density function
being sampled to generate efficient transitions in the Markov chain to obtain the posterior
distribution. This method uses simulations that exploit Hamiltonian dynamics in order to im-
prove the acceptance rate of the Metropolis algorithm. The prior distribution considered for
all parameters is a Gaussian and diffuse distribution, specifically a N(0, 1000).

After fitting the models, we utilize the 95% credible intervals (CI95) to identify the co-
variates that are not significant. A covariate is deemed significant if the CI95 of its parameter
does not contain zero.

We need to use a specific definition of residual in the validation analysis since the pro-
posed approach models both the mean and the variance of the response. We define the
residuals by standardizing the response with the posterior means of the mean and variance
submodels, µ̃tℓ and σ̃2

tℓ, etℓ = (ytℓ − µ̃tℓ)/σ̃tℓ. The proposed expression is based on the log-
Gaussian density of the observation, which is adjusted to account for the non-stationary vari-
ance. Residuals obtained from this density are used to detect any issues in the fitted models.

§4. Results

This section provides a summary of the results. Firstly, we describe the procedure used to
pre-select the number of terms in the model. Next, we present a summary of the model fitting,
and finally, the final fitted model is used to characterize the changes in the distribution of Tx.
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4.1. Pre-selection of covariates in the mean and variance submodels

To avoid overparameterization, variable selection is essential. To achieve this, a covariate-
selection algorithm was developed, which compares non-Bayesian linear models for each
station. Comparing multiple Bayesian models would have been computationally too expen-
sive without a clear benefit.

In selecting the best mean submodel, our procedure aims to optimize the AIC criterion.
We begin by including natural effects such as serial dependence and seasonality, and then
analyze the effects of the trend. For seasonality, each harmonic component (sine and cosine
with the same period) is gradually added until no improvement is found. To avoid overparam-
eterization, we consider five nested models that sequentially explain most of the variability
in the response: (i) Model M.0 uses only Ytℓ−1, i.e. a simple AR(1) model; (ii) Model M.har
adds harmonic terms to M.0; (iii) Model M.har.int introduces interactions between Ytℓ−1 and
harmonic terms; (iv) Model M.trend includes trend terms in addition to M.har.int; (v) Model
M.trend.int adds interactions between harmonic terms and trend. The interactions in models
M.har.int and M.trend.int allow us to model different persistence and trend effects for each
day of the year. We compare the five fitted models and choose the one with the lowest AIC.

Inspired on the idea that E[ϵ2
tℓ] = Var(ϵtℓ) = σ2

tℓ, we implement the selection of the vari-
ance submodel. This is similar to the tools based on squared residuals that are used to detect
heteroscedasticity. In this case, we apply the same procedure as above to the squared residuals
from the fitted mean submodel. The fitting procedure identifies terms that show a systematic
relationship with the expected value of the response, which is the residual variance.

The procedure for selecting the mean submodel is applied to each of the 18 stations, and
in all cases, the resulting R2 is higher than 0.83. Of the 18 stations, five have models without
trend terms, with M.har selected in one station and M.har.int in four stations. Eleven stations
have M.trend selected, and two stations have M.trend.int selected. All the mean submodels
include at least two harmonic functions and the autoregressive term. Spatial patterns appear;
for example, all the submodels without trend terms are in the north-west area. All the variance
submodels include one harmonic function and the autoregressive term, with models without
trend selected in six stations, M.har in three stations, M.har.int in three stations, M.trend in
eight stations, and M.trend.int in four stations. No spatial patterns are observed regarding the
variance submodels that include trend. The variance submodels have R2 values around 0.05,
which could be associated with the fact that daily variability is caused by the daily evolution
of the atmospheric situation. Future work could improve the variance submodel by including
atmospheric covariates.

4.2. Fitted models

To fit the models, two chains are simulated and 2,000 samples are saved from each. The
chains are initialized with a warm-up period of 500 steps followed by a sampling period of
1,000 steps. If the resulting chains have not yet reached convergence, we increase the warm-
up period to 9,000 steps to obtain 10,000 steps in total.

To evaluate the mixing of the model parameters, we followed usual criteria as suggested
by Gelman et al. [6]. The potential scale reduction factor (R̂) for all parameters was close to
1 and below 1.1, specifically ranging from 0.999 to 1.003. Additionally, the effective sample
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Mean submodel Variance submodel
Parameter Mean CI 95% Parameter Mean CI 95%

β0 −160 (−200,−120) βσ0 6.1 (6, 6.2)
β1,s −15 (−17,−12) βσ1,s 0.13 (−0.0039, 0.28)
β1,c −34 (−37,−31) βσ1,c 0.81 (0.67, 0.94)
β2,s 6.8 (5.9, 7.6) βσ2,s −0.1 (−0.15,−0.062)
β2,c −1.2 (−2,−0.32) βσ2,c −0.05 (−0.093,−0.0085)
β3,s 0.001 (−0.53, 0.54) βσ3,s −0.015 (−0.042, 0.012)
β3,c −1.2 (−1.7,−0.67) βσ3,c 0.092 (0.065, 0.12)
α0 0.11 (0.094, 0.13)
ρ0 0.68 (0.67, 0.69) ρσ0 0.0019 (0.0015, 0.0023)
ρ1,s 0.03 (0.018, 0.043) ρσ1,s 0.00025 (−0.00043, 0.00088)
ρ1,c 0.0027 (−0.011, 0.016) ρσ1,c −0.0037 (−0.0043,−0.0031)

Table 1: Mean and credible interval of the posterior distribution of parameters in the model
for Zaragoza. Non-significant terms appear in italics.

size for all but seven parameters was greater than 800, with the remaining seven having an
effective sample size greater than 320.

Table 1 shows, as an example, a summary of the posterior distributions obtained for the
parameters in the Bayesian model for Zaragoza. We found 18 significant terms and only four
non-significant parameters, in italics, that are sine or cosine in some harmonic components
where the other term is significant. The variance predictor uses seasonality terms and an
autoregressive term.

Similar models are obtained for the other stations. The number of parameters in the 18
fitted models ranges from 13 (Yesa) to 26 (Pallaruelo). Almost all components in all of the
models are significant, inducing that all of the proposed effects help to explain temperature
distribution.

4.3. Estimating the warming over time

The fitted models enable us to evaluate the spatio-temporal variability of the trend effects,
expressed in ◦C/decade and corresponding to a particular day ℓ within year. The trend is es-
timated using the posterior distribution of α0 +

∑Nα

i=1(αi,sS iℓ + αi,cCiℓ) in the mean submodel.
Figure 3(a) shows the posterior densities of the trend in Tornos, Panticosa, and Zaragoza as
illustration. In the Tornos model, a seasonal trend effect is included, as observed by the dis-
tinct posterior distributions in July 24 and December 24. A clearly positive trend is estimated
in summer and a negative trend in winter, indicating that no common increasing effect is
present throughout the year. In contrast, the Panticosa and Zaragoza models do not include
interaction between the trend and seasonal terms. That is, the same positive trend is estimated
within the year, with posterior medians of 0.05 and 0.11◦C/decade, respectively.

Figures 3(b) and 3(c) show the posterior mean trend estimated on July 24 and December
24 for the mean submodel of Tx in the 18 stations. The maps were generated using a LOESS
procedure, where the black line indicates zero trend, red represents higher values and yellow
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Figure 3: Left: Posterior densities of the trend (◦C/decade) in the mean of Tx, in Tornos (two
different days), Zaragoza (non-seasonal) and Panticosa (non-seasonal). Center and right:
Maps of the posterior mean of the estimated trend in the mean submodel in July 24 and
December 24.

represents lower values. The spatio-temporal variability of the trend is evident, with a general
increasing trend observed in summer, except in the north-west region. In winter, stations with
a positive trend are also in the majority, although less than in summer. The spatial patterns
observed in spring are similar to those in summer, and those in autumn are similar to winter.

Regarding the variance submodel, the trend effect has been found to be significant in
12 stations. However, it does not exhibit a clear pattern like the mean submodel. Seasonal
behavior of the trend term has been observed only in a few stations, such as Santa Eulalia.

4.3.1. Estimation of the change in the marginal distribution

The Bayesian framework allows estimating the mean and quantiles of the marginal distri-
bution of Tx. The posterior densities of the difference between monthly mean temperatures
estimated in two decades 50 years apart (1955–1964 and 2005–2014) can be obtained. Fig-
ure 4 shows these densities in Zaragoza for January, June, and September. Despite the mean
submodel not including seasonality in the trend effect, different warming rates are estimated
in each month, likely due to other dynamic effects like persistence. June and September ex-
perienced a stronger warming than January, suggesting that the hottest period of the year is
becoming longer.

4.4. Discussion

It is known that global warming effects are not the same in all climates and geographic re-
gions [5]. The spatial heterogeneity in Aragón has also been identified by other authors.
Peña-Angulo et al. [8] studied the evolution of the mean seasonal maximum and minimum
temperatures in stations of the whole Iberian Peninsula between 1916 and 2015. They found
an specially heterogeneous evolution with differences depending on the season: from 1956,
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Figure 4: Posterior densities of the difference in mean Tx between 1955–1964 and 2005–
2014, for January, June, and September in Zaragoza.

they estimate a trend of 0.31◦C/decade in spring, 0.27◦C/decade in summer, 0.13◦C/decade
in autumn and 0.17◦C/decade in winter.

The spatial pattern found by Castillo-Mateo et al. [4] in their auto-correlation term ρ0
are similar to the pattern in the posterior mean of the persistence effect during summer in our
model. It is around 0.7, except in the north-west area, where a greater atmospheric variability
appears. This similarity also appears in the spatial pattern of the warming in summer: they
found that the posterior mean of the trend reaches greater values, near 0.35◦C/decade, in the
center of the Ebro Valley, while in the north-west the mean is close to zero.

Our methodology extends the work of Castillo-Mateo et al. by introducing a variance
submodel that captures seasonal patterns and dependence on previous days in temperature
variability. We also incorporate interaction terms with harmonics to model variations in per-
sistence and trend effects within a year. Unlike prior studies, our model is fitted locally,
which prevents overparameterization and permits a more informative analysis within each
individual observed location. Although alternative approaches, such as quantile regression
as proposed in [3], can analyze the evolution of variability, the assumption of independence
across quantile levels makes it challenging to compare trends across quantiles jointly.

In contrast to our approach, a spatial model could offer several advantages over local
models. Firstly, it permits the inclusion of geographical covariates such as elevation, which
can improve the accuracy of the model. Secondly, it enables the analysis of global effects
and the modeling of spatial dependence and patterns that may exist in the region, which
can provide a more accurate and complete understanding of the underlying processes. Also,
spatial modeling can provide more robust inference and prediction in areas where there are
limited data, by borrowing strength from nearby locations. With the local models, we can
produce maps to identify spatial patterns using interpolation of local results, however, we can
not make inference on stations where registers do not exist. This can be done using spatial
models such as the model by Castillo-Mateo et al.
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§5. Conclusions

This work introduces a Bayesian autoregressive model that simultaneously models both the
mean and the variance of the daily maximum temperature. One of the key advantages of
this approach is the ability to incorporate seasonal effects using harmonic terms, as well as
serial correlation, a long-term trend across years, and interaction terms between the seasonal
component and other effects.

The model is fitted in a Bayesian framework based on the Hamiltonian Monte Carlo
algorithm implemented in RStan. Given the complexity of the models, the algorithm is com-
putationally expensive and leads to a slow convergence. For this reason, a model-selection
procedure is implemented using a non-Bayesian approach as a preliminary step.

Models with the previous structure are fitted to each of 18 Tx series located around
Aragón and measured from 1953 to 2015. All the fitted models include persistence and sea-
sonal terms both in the mean and variance submodels. The trend terms in the mean submodel
of the 18 stations allow us to identify spatial patterns of the evolution over time, in particular,
an increasing trend in summer all over the region except in the northwest area. In all the
variance submodels, several significant covariates are found, revealing the need for models
including a time-varying variance. Using the previous fitted models, we can quantify the ef-
fect of global warming on temperature; for example, we estimate that, in Zaragoza, the mean
of the increases of monthly mean temperature between decades 1955-1964 and 2005-2014 is
higher than 1◦C in January and September and higher than 2◦C in June.

The structure of the model has many advantages. For example, it works on a daily scale
so that any measure relates to the distribution of the daily temperature, but also any function
of it such as means in different periods of time, can be studied using the model. Further, the
model allows to generate simulated samples of Tx, so that it can be used as stochastic weather
generator.

In our future work, we plan to evaluate the effectiveness of our models in representing
extreme temperature data. Additionally, we aim to incorporate new atmospheric covariates
that capture large-scale weather patterns. To achieve this, we will develop Bayesian spatial
models and consider the use of Gaussian processes to account for spatial dependence not
captured by covariates [4]. We will also explore the potential of the HMC algorithm for our
models.
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