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POSITIVITY-PRESERVING SCHEMES FOR
SOME NONLINEAR STOCHASTIC PDES
Charles-Edouard Bréhier, David Cohen and Johan Ulander

Abstract. We introduce a positivity-preserving numerical scheme for a class of nonlin-
ear stochastic heat equations driven by a purely time-dependent Brownian motion. The
construction is inspired by a recent preprint by the authors where one-dimensional equa-
tions driven by space-time white noise are considered. The objective of this paper is to
illustrate the properties of the proposed integrators in a different framework, by numerical
experiments and by giving convergence results.
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§1. Introduction

Designing and studying numerical methods for stochastic partial differential equations
(SPDEs) is an active field of research since the middle of the 1990’s, we refer to the mono-
graph [7] and to the recent preprint [2] for a review of the literature. Proving sharp strong and
weak convergence rates is not the only matter of interest, it is also desirable to preserve qual-
itative properties of the solutions at the discrete level, see the classical reference [5]. In order
to illustrate this aspect we consider the following class of nonlinear heat equations driven by
a multiplicative one-dimensional standard Brownian motion (using a formal notation for the
noise β̇(t)) 

∂tu(t, x) = ∆u(t, x) + g(u(t, x))β̇(t) , t > 0, x ∈ D

u(t, x) = 0 , t ≥ 0, x ∈ ∂D,

u(0, x) = u0(x) , x ∈ D,
(1)

for (t, x) ∈ [0,T ] × D, where D = (0, 1)d, see Section 2 for details on the notation and a
rigorous formulation, see equation (3).

The noise in (1) is purely time-dependent and is interpreted in the Itô sense. The non-
linearity g : R → R is of class C1 with bounded derivative, and is assumed to satisfy the
condition g(0) = 0. The above SPDE has the following qualitative property which follows
from a comparison principle argument (see also [3]): if the initial condition u0 ≥ 0 is con-
tinuous and nonnegative on [0, 1]d, then almost surely one has u(t, x) ≥ 0 for all t ≥ 0 and
x ∈ [0, 1]d. Such property has also been proved for instance in [9, 10, 8] for SPDEs driven by
space-time white noise, and we refer to the preprint [2] for further references.

While classical time integrators, such as the Euler–Maruyama scheme, the semi-implicit
Euler–Maruyama scheme, and the stochastic exponential Euler integrator do converge when
applied to the SPDE (1), they do not satisfy the positivity-property of the exact solution to
the SPDE (see below for a numerical illustration). In order to fix this issue, we propose
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a positivity-preserving explicit scheme (5), based on a Lie–Trotter splitting strategy. The
main idea of a splitting strategy is to decompose the vector field of the problem in such
a way that the obtained subsystems are exactly (or easily) integrated, see the monographs
[5, 1]. In this work, we only deal with the temporal discretization. A fully-discrete scheme
is easily obtained by combining the proposed time integrator with a standard finite difference
method, which also preserves the positivity of the solution, see Section 4. Let us mention
the recent works [12] for the construction and analysis of positivity-preserving schemes for
linear SPDEs driven by a finite number of Brownian motions. We refer to the preprint [2] for
references on positivity-preserving schemes for stochastic differential equations.

In this short paper, we first briefly provide the necessary background to study (1) (Sec-
tion 2). The construction and the properties of the proposed scheme are given in Sec-
tion 3. We state without proof the following main results: the Lie–Trotter splitting scheme
is positivity-preserving and it converges in the mean-square sense to the solution of (1) with
strong rate of convergence 1/2. In future works, it may be interesting to identify the weak rate
of convergence for the proposed scheme. Finally, Section 4 presents numerical experiments
in order to illustrate the superiority of the proposed integrator compared with classical ones.

The construction of the proposed positivity-preserving scheme (5) follows the same strat-
egy as in the recent preprint [2] written by the authors, where the case of one-dimensional
nonlinear stochastic heat equations driven by space-time white noise interpreted in the Itô
sense (using a formal notation for the noise Ẇ(t, x))

∂tu(t, x) = ∂2
xxu(t, x) + g(u(t, x))Ẇ(t, x),

u(t, 0) = u(t, 1) = 0,
u(0, x) = u0(x),

(2)

for (t, x) ∈ [0,T ] × (0, 1) is considered. Let us briefly compare the results of this short paper
with those of [2]. First, note that (2) needs to be considered on a one-dimensional domain
since it is driven by space-time white noise, whereas (1) can be considered in arbitrary dimen-
sion. Another major difference is the regularity of solutions: the solutions of (2) are Hölder
continuous with exponent 1/4− in time and 1/2− in space, whereas the solutions of (1) are
Hölder continuous with exponent 1/2− in time and 1− in space. As a result, the order of con-
vergence of the splitting scheme differs, this is why one obtains strong order of convergence
1/2 in this paper. Finally, in [2] it is necessary to deal with a fully-discrete scheme, and to
impose CFL stability conditions to ensure boundedness of moments and convergence of the
scheme, even if the linear part of the problem is solved exactly (by an exponential integra-
tor). Both the analysis and the numerical experiments in [2] show the importance of the CFL
conditions. On the contrary, in this paper the time-step size can be freely chosen and we are
even able to study the scheme in a semi-discrete framework. The numerical experiments in
Section 4 show that indeed CFL conditions are not needed for the discretization of (1) using
the proposed time integrator.
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§2. Setting

In this work, we consider the following nonlinear stochastic heat equation driven by a purely
time-dependent Brownian motion, interpreted in the Itô sense:

du(t, x) = ∆u(t, x) dt + g(u(t, x)) dβ(t) , t > 0, x ∈ D,
u(t, x) = 0 , t ≥ 0, x ∈ ∂D,

u(0, x) = u0(x) , x ∈ D,
(3)

where the spatial domain is D = (0, 1)d and D = [0, 1]d, in arbitrary dimension d ≥ 1.
Above ∆ = ∂2

x1 x1
+ . . . + ∂2

xd xd
is the Laplace operator and homogeneous Dirichlet boundary

conditions are imposed on ∂D. The evolution is driven by a standard real-valued Brownian
motion

(
β(t)

)
t≥0 defined on a probability space (Ω,F ,P) satisfying the usual conditions.

The initial value u0 : D → R is assumed to be a bounded and Lipschitz continuous
mapping, and to satisfy the homogeneous Dirichlet boundary conditions: u0(x) = 0 for all
x ∈ ∂D. The initial value is assumed to be deterministic. For all α ∈ (0, 1], introduce the
norms

∥v∥0 = sup
x∈D

|v(x)| , ∥v∥α = ∥v∥0 + sup
x1,x2∈D

|v(x2) − v(x1)|
|x2 − x1|

α

for any α-Hölder continuous mapping v.
The nonlinearity g : R → R is a mapping of class C1, and is assumed to have a bounded

derivative and to satisfy the condition g(0) = 0.
Under the conditions above, the stochastic partial differential equation (3) admits a unique

mild solution, given by the integral formulation

u(t, x) =
∫
D

G(t, x, y)u0(y) dy +
∫ t

0

∫
D

G(t − s, x, y)g(u(s, y)) dy dβ(s), t ≥ 0, x ∈ D, (4)

where (t, x, y) ∈ (0,+∞) × D
2
7→ G(t, x, y) denotes the fundamental solution of the heat

equation with homogeneous boundary conditions on the domain D. We refer for instance
to [6, 11] for standard references on the analysis of stochastic partial differential equations.

As seen in the introduction, the exact solution
(
u(t, x)

)
t≥0,x∈D of the SPDE (3) satisfies the

following property: if u0(x) ≥ 0 for all x ∈ D, then almost surely, one has u(t, x) ≥ 0 for all
(t, x) ∈ [0,T ]×D. See [3] for a proof. For a sketch of an alternative proof using the consistent
positivity-preserving scheme (5), see the end of Section 3.

Note that it would be straightforward to generalize the results presented in this paper
to SPDEs driven by noise of the type g(t, x, u(t, x)) dβ(t), for sufficiently regular functions
g satisfying the condition g(t, x, 0) = 0 for all t ≥ 0, x ∈ D. Furthermore, with appro-
priate minor modifications we could also consider SPDEs driven by a noise of the type∑K

k=1 gk(u(t, x)) dβk(t), where β1, . . . , βK are independent standard real-valued Brownian mo-
tions and the functions gk are of class C1, have bounded first order derivatives and satisfy the
condition gk(0) = 0. One could also extend the analysis to systems of SPDEs, like in [2]. In
the sequel we only consider the SPDE (3) for ease of presentation.
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§3. Positivity-preserving integrator

Let us now describe the proposed time integrator for the approximation of the solution of (3).
Let T ∈ (0,∞) be given and define the time-step size τ = T/M where M ∈ N is an integer.
Set tm = mτ for all m ∈ {0, . . . ,M} and define the increments of the Brownian motion δβm =

β(tm+1) − β(tm) for all m ∈ {0, . . . ,M − 1}. Introduce the auxiliary bounded and continuous
function f : R→ R defined by

f (v) =
g(v)
v
1v,0 + g

′(0)1v=0.

The numerical approximation uLT
m (·) of the solution u(tm, ·) at time tm is defined as follows:

for all m ∈ {0, . . . ,M − 1} and x ∈ D,

uLT
m+1(x) =

∫
D

G(τ, x, y)
(
exp

(
f (uLT

m (y))δβm −
f (uLT

m (y))2τ

2

))
dy, (5)

with initial value uLT
0 = u0. The proposed scheme (5) is based on a Lie–Trotter splitting

strategy: given uLT
m for some m ∈ {0, . . . ,M − 1}, the numerical solution uLT

m+1 is obtained by
solving successively two subsystems on the time interval [tm, tm+1]:

• first, the family of linear Itô stochastic differential equations

dv1,m(t, x) = v1,m(t, x) f (uLT
m (x)) dβ(t) , t ∈ [tm, tm+1], x ∈ D, (6)

with initial value v1,m(tm, ·) = uLT
m (·);

• second, the linear deterministic partial differential equationdv2,m(t, x) = ∆v2,m(t, x) dt , t ∈ (tm, tm+1), x ∈ D

v2,m(t, 0) = v2,m(t, 1) = 0 , t ∈ [tm, tm+1], x ∈ ∂D,
(7)

with initial value v2,m(tm, ·) = v1,m(tm+1, ·).

Indeed, the exact solutions of the subsystem (6) and (7) are given by the following expres-
sions: for all t ∈ [tm, tm+1] and x ∈ D, one has

v1,m(t, x) = exp
(

f (uLT
m (x))

(
β(t) − β(tm)

)
−

f (uLT
m (x))2(t − tm)

2

)
uLT

m (x),

v2,m(t, x) =
∫
D

G(t − tm, x, y)v2,m(tm, y) dy =
∫
D

G(t − tm, x, y)v1,m(tm+1, y) dy
(8)

and the numerical approximation is set to uLT
m+1(x) = v2,m(tm+1, x), as prescribed by the Lie–

Trotter splitting strategy. Note that the scheme (5) is explicit.
It is worth mentioning that the proposed scheme (5) is exact when applied to the linear

stochastic heat equation (3) when g(v) = v: in that case uLT
m = u(tm, ·) for all m ∈ {0, . . . ,M}.

This can easily be seen by a change of unknown: if g(v) = v, then (t, x) 7→ e−β(t)+ t
2 u(t, x) is

the solution of the deterministic linear heat equation. In the general case, the nonlinearity f
is frozen at the left-point of each subinterval [tm, tm+1], which results in the linear SDEs (6)
which can then be solved exactly using (8).
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The main benefit of introducing the explicit splitting scheme (5) is the following property:
if u0(x) ≥ 0 for all x ∈ D, then for any choice of the time-step size τ = T/M, one has uLT

m (x) ≥
0, for all m ∈ {0, . . . ,M}, almost surely. This means that the scheme is positivity-preserving.
Proving this property is straightforward: by the interpretation as a splitting scheme, it suffices
to check that the two subsystems (6) and (7) are positivity-preserving. This is easily seen in
the expressions (8) of their solutions v1,m(t, x) and v2,m(t, x).

The positivity-preserving property of the scheme (5) is ensured by a careful discretization
of the stochastic perturbation term of (3), and is not satisfied for standard integrators. For
instance, the stochastic exponential Euler integrator

uSEXP
m+1 (x) =

∫
D

G(τ, x, y)
(
uSEXP

m (y) + g(uSEXP
m (y))δβm

)
dy (9)

is not positivity-preserving since the support of the Gaussian random variables δβm is the
entire real line, see also the numerical experiments below.

Let us now state properties of the numerical scheme (5) in order to justify that it is con-
sistent with the SPDE (3) when the time-step size τ tends to zero. Recall that the initial value
u0 is Lipschitz continuous and that ∥u0∥0 and ∥u0∥α are defined in Section 2.

First, moment bounds are satisfied: for all T ∈ (0,∞), there exists C0(T ) ∈ (0,+∞) such
that for any time-step size τ = T/M, one has

sup
0≤m≤M

sup
x∈D

E[|uLT
m (x)|2] ≤ C0(T )∥u0∥

2
0. (10)

Second, one has the following strong convergence result: for all T ∈ (0,∞) and all α ∈ (0, 1),
there exists Cα(T ) ∈ (0,+∞) such that for any time-step size τ = T/M, one has

sup
0≤m≤M

sup
x∈D

E[|uLT
m (x) − u(tm, x)|2] ≤ Cα(T )∥u0∥

2
α τ

α. (11)

The strong error estimate (11) states that the proposed integrator converges in a mean-square
sense with order 1/2. This order of convergence is expected to be optimal in general, as will
be illustrated by the numerical experiments below.

Providing detailed proofs of the moment bounds (10) and of the strong error estimate (11)
is out of the scope of this work. It is worth mentioning that combining the positivity-
preserving property of the scheme (5) and the strong error estimate (11) provides a proof
of the positivity of the exact solutions of the SPDE (3).

§4. Numerical experiments

In this section we numerically illustrate the properties of the proposed scheme (5) and com-
pare it with existing methods. We put emphasis on preservation of positivity and on mean-
square error estimates in order to exhibit the strong rate of convergence 1/2 given in Section 3
above.

The one-dimensional stochastic nonlinear heat equation (3) is first discretized in space
by a centered finite difference approximation on a uniform grid, see for instance [4] (for
problems driven by space-time white noise). Let N ∈ N, define the mesh size h = 1/N,
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and the grid points xn = nh for 0 ≤ n ≤ N. We use the convention that for any vector
v =

(
vn

)
1≤n≤N−1 ∈ R

N−1, we append discrete homogeneous Dirichlet boundary conditions
v0 = 0 and vN = 0 when needed. The spatially discrete RN−1-valued stochastic process
uN(t) =

(
uN

n (t)
)
1≤n≤N−1, for all t ≥ 0, is thus defined as the solution to the N − 1-dimensional

stochastic differential equation

duN(t) = N2DNuN(t) dt + g(uN(t)) dβ(t), (12)

with initial value uN(0) =
(
uN

0
)
1≤n≤N−1 =

(
u0(xn)

)
1≤n≤N−1, and the (N − 1) × (N − 1) matrix

DN is the standard matrix for the approximation of the Laplace operator with homogeneous
Dirichlet boundary conditions. The solution uN(t) of (12) is nonnegative for nonnegative
initial value uN(0), since −DN satisfies a monotonicity property.

The system of stochastic differential equations (12) is then discretized in time by the
following integrators (we recall that τ = T/M denotes the time step size):

• the proposed Lie–Trotter splitting scheme (5) (denoted LT below)

uLT
m+1 = eτN2DN

(
exp

(
f (uLT

m )δβm −
f (uLT

m )2τ

2

))
(13)

• the Euler–Maruyama scheme (denoted EM below)

uEM
m+1 = uEM

m + τN2DNuEM
m + g(uEM

m )∆mβ,

• the semi-implicit Euler–Maruyama scheme (denoted SEM below)

uSEM
m+1 = uSEM

m + τN2DNuSEM
m+1 + g(uSEM

m )∆mβ,

• the stochastic exponential Euler integrator (denoted SEXP below)

uSEXP
m+1 = eτN2DN (

uSEXP
m + g(uSEXP

m )∆mβ
)
.

In the first numerical experiment, we illustrate the positivity-preserving property of the
Lie–Trotter scheme (LT) when applied to the time discretization of the stochastic heat equa-
tion (3) on the time interval [0, 2] with the following multiplicative terms: g(v) = λv, g(v) =
λv/(1 + v2), λ(sin(v) + v), and g(v) = λ ln(1 + v), where the real parameter λ is introduced
to modify the size of the noise. We consider the following parameters: u0(x) = sin(πx),
τ = 2−5, N = 28, λ = 2.5 and compute 100 realizations of each time integrators. The re-
sults are presented in Table 1. The proposed scheme produces only nonnegative numerical
solutions, which confirms the result stated in Section 3. On the contrary, the other integrators
produce some solutions with negative values. This illustrates the superiority of the proposed
scheme (5).

In the second numerical experiment, we investigate the mean-square errors of the above
time integrators in order to confirm the convergence result stated in Section 3. We discretize
the stochastic heat equation (3) on the time interval [0, 0.5] with g(v) = v and g(v) = v/(1+ v2)
and initial value u0(x) = sin(πx). The spatial discretization is again performed by a centered
finite difference method with mesh size h = 2−8. The temporal discretizations is done by the
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g(v) LT EM SEM SEXP
2.5v 100/100 2/100 47/100 47/100

2.5v/(1 + v2) 100/100 2/100 49/100 49/100
2.5(sin(v) + v) 100/100 0/100 2/100 2/100
2.5 ln(1 + v) 100/100 2/100 50/100 49/100

Table 1: Proportion of samples containing only positive values out of 100 simulated sample
paths for the time integrators: Lie–Trotter scheme (LT), Euler–Maruyama scheme (EM),
semi-implicit Euler–Maruyama (SEM), and stochastic exponential Euler scheme (SEXP).
Time-step size: τ = 2−5. Mesh size: h = 2−8.

time integrators: LT, SEXP, and SEM. In this experiment the explicit EM integrator is not
tested. Figure 1 presents, in a loglog plot, the mean-square errors

sup
0≤m≤M

sup
0≤n≤N

(
E[|unum

m,n − uref(tm, xn)|2]
) 1

2

measured for the time interval [0, 0.5]. The time step sizes used for these experiments range
from τ = 2−4 to τ = 2−16. The reference solution uref is computed using the Lie–Trotter
splitting scheme with τ = 2−16. We use 150 samples to approximate the expectations. We
have experimentally checked that the Monte Carlo error is negligible to observe mean-square
convergence. In the first plot of Figure 1, one observes that if g(v) = v then the Lie–Trotter
splitting scheme produces the exact solution as explained in Section 3, while the other inte-
grators have rate of convergence 1/2. In the second plot of Figure 1, one observes a rate of
convergence 1/2 in the mean-square error estimates for the three integrators. This confirms
the convergence result stated in Section 3.
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Figure 1: Mean-square errors of the splitting scheme (LT), the stochastic exponential Euler
integrator (SEXP), and the semi-implicit Euler–Maruyama scheme (SEM). Mesh size h = 2−8

and average over 150 samples.

Finally, we illustrate the fact that these error bounds are uniform in the spatial discretiza-
tion. We compute the mean-square errors on the time interval [0, 0.5] of the Lie–Trotter
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splitting scheme when applied to the finite difference discretization of the stochastic heat
equation with g(v) = 1.5v, resp. g(v) = 1.5v/(1 + v2), and mesh sizes h = 2−4, 2−6, 2−8, 2−10.
The time step sizes used for these experiments range from τ = 2−4 to τ = 2−16. The reference
solutions are computed using the Lie–Trotter splitting scheme with τ = 2−16. As above 150
samples are used to approximate the expectations and the Monte Carlo error is negligible for
the observation of the rates of convergence. These results are presented in Figure 2. One
observes that the error does not depend on the mesh size h. This is in sharp contrast to the ob-
servations from the preprint [2] on the approximation of the equation (2) driven by space-time
white noise, for which a CFL condition is required.
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Figure 2: Mean-square errors of the splitting scheme for several values of the spatial mesh
size h = 2−4, 2−6, 2−8, 2−10. Average over 150 samples.

We conclude this paper with some numerical experiments in dimension d = 2.
Let us first consider the stochastic heat equation (3) on the time interval [0, 2] with ini-

tial value u0(x1, x2) = sin(πx1) sin(πx2) and with multiplicative terms: g(v) = 2.5v, g(v) =
2.5v/(1+ v2), 2.5(sin(v)+ v), and g(v) = 2.5 ln(1+ v). The discretization parameters are taken
to be τ = 2−5 and hx1 = hx2 = 2−4. We compute 100 realizations of each time integrators. The
proportion of samples containing only positive values is presented in Table 2. One can again
observe the superiority of the proposed Lie–Trotter splitting scheme.

g(v) LT EM SEM SEXP
2.5v 100/100 0/100 47/100 47/100

2.5v/(1 + v2) 100/100 0/100 48/100 48/100
2.5(sin(v) + v) 100/100 0/100 2/100 2/100
2.5 ln(1 + v) 100/100 0/100 46/100 53/100

Table 2: SPDE in 2d: Proportion of samples containing only positive values out of 100
simulated sample paths for the time integrators: Lie–Trotter scheme (LT), Euler–Maruyama
scheme (EM), semi-implicit Euler–Maruyama (SEM), and stochastic exponential Euler
scheme (SEXP). Time-step size: τ = 2−5. Mesh sizes: hx1 = hx2 = 2−4.

Next, we compute the mean-square errors, measured for the time interval [0, 0.5], of the
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LT, SEXP and SEM integrators when applied to the SPDE (3) with g(v) = v and g(v) =
v/(1 + v2) and initial value u0(x1, x2) = sin(πx1) sin(πx2). The discretization parameters are:
hx1 = hx2 = 2−4 for the mesh sizes and the time-step size ranging from τ = 2−4 to τ = 2−14.
The reference solution uref is computed using the Lie–Trotter splitting scheme with τ = 2−14.
We use 150 samples to approximate the expectations. The results are presented in Figure 3.
Again one observes that the Lie–Trotter splitting scheme is exact for linear problems and has
a rate of convergence 1/2 in the mean-square sense.
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Figure 3: SPDE in 2d: Mean-square errors of the splitting scheme (LT), the stochastic ex-
ponential Euler integrator (SEXP), and the semi-implicit Euler–Maruyama scheme (SEM).
Mesh sizes hx1 = hx2 = 2−4 and average over 150 samples.
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