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DOES MATHEMATICAL EPIDEMIOLOGY
HAVE GENERAL LAWS, BESIDES THE

DFE STABILITY THEOREM?
Florin Avram, Rim Adenane, Dan Goreac and Andrei Halanay

Abstract. A very large class of ODE epidemic models (2) discussed in this paper enjoys
the property of admitting also an integral renewal formulation, with respect to an “age
of infection kernel" a(t) which has a matrix exponential form (6). We observe first that
a very short proof of this fact is available when there is only one susceptible compart-
ment, and when its associated “new infections" matrix has rank one. In this case, a(t)
normalized to have integral 1, is precisely the probabilistic law which governs the time
spent in all the “infectious states associated to the susceptible compartment", and the nor-
malization is precisely the basic replacement number. The Laplace transform (LT) of a(t)
is a generalization of the basic replacement number, and its structure reflects the laws of
the times spent in each infectious state. Subsequently, we state an extension to processes
with several susceptible classes. The results outlined reveal that the ODE epidemic mod-
els highlighted here have also interesting probabilistic properties.

Keywords: (A, B) Arino-Brauer epidemic models, stability, basic replacement number,
basic reproduction number, age of infection kernel, several susceptible compartments,
Diekmann matrix kernel, generalized linear chain trick, Erlangization, Coxianization.
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§1. Introduction

Motivation. The answer to the question in the title is clearly no, since if other laws existed,
they would have surely been discovered by now. But, the answer becomes yes if one re-
stricts to models whose “new infections matrix" has rank one [3]. In that case three important
laws (or properties) are known already. The first is the “Diekmann law": the existence of a
probabilistic renewal kernel – see [11, 3] and references therein. The second is the "Arino
& al. law": the representability of the basic replacement number as a bilinear form. This is
a consequence of the previous, and may also be proved simply by noting that all the eigen-
values of the next generation matrix except one are 0 [2, 3]. The third general principle,
the “generalized linear chain trick" [18, 19], will be included in the full version of this pa-
per (a more descriptive name would be the “phase-type extension of scalar transfer rates").
These results are very important, since they apply to a class of models which includes a very
large proportion of the models used in applied studies of Covid-19, influenza, ILI (influenza
like illnesses), and other epidemics. In fact, we are not aware of any paper which calibrates
epidemic models to real data and does not use models of this type.

While the three results have been known for a while, they are somewhat spread all over
the place. Furthermore, the immense majority of the literature seems unaware of them, and
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treat instead each particular model as a new exercise. This motivated us to review here the
results for the case of one susceptible compartment, and to provide extensions to the case of
several susceptible classes; note the formulas (18) and (17), which seem to be new.

A bird’s eye view of mathematical epidemiology. Mathematical epidemiology may
be said to have started with the celebrated paper “A contribution to the mathematical the-
ory of epidemics" [20] on the 1906 plague epidemic in Bombay, which introduced the SIR
(susceptible-infected-recovered) model. ¶ Bacaer shows that better results can be obtained
by adding compartments for rats and fleas [5, (7-11)], whose importance had been overlooked
in the first study. In this spirit, each of the three fundamental compartments S,I,R, could be
replaced by classes of several compartments, specific to each epidemics, to be revealed by
further analyses.

The most fundamental aspect of mathematical epidemiology is the existence of at least
two possible fixed states: the boundary “disease-free equilibrium" (DFE), corresponding to

the elimination of all compartments
→

i involving sickness, which may be easily found from the

system of non-infectious equations with
→

i = 0, and the “endemic point" which replaces the
DFE when elimination of the sickness is impossible (without intervention, such as quarantine,
vaccination, etc...). Note this further induces a partition of all the coordinates and the equa-
tions into “infectious" (eliminable), and the others, or “non-infectious". The non-infectious
may further be divided into recovered (output compartments) and susceptible (input compart-
ments). The latter are very important; for example, older individuals may be more susceptible
than young ones, or viceversa, and therefore differentiating susceptibles into several groups
may be crucial.

The most important result of mathematical epidemiology is the “basic reproduction num-
ber" R0 threshold theorem concerning the stability of the DFE, already encountered in [20].

There are two flavors of mathematical epidemiology and two corresponding formulas for
the basic reproduction number:

1. One, for ODE models, identifies R0, under conditions specified in [23, 24], via a three-
steps “next generation matrix" (NGM) procedure:

(a) computing a “pre-NGM" matrix which involves only the infectious equations,
(b) substituting into it the coordinates of the DFE, which is obtained using only non-

infectious equations, and
(c) computing the spectral radius of the resulting NGM matrix.

2. The “non-Markovian/renewal" approach adds one further crucial aspect to mathemat-
ical epidemiology: the change in infectivity as function of age of the infection at the
time when transmission took place (which was assumed to be exponentially distributed
under the previous approach). This factor enters the model via an “age of infection
kernel", and the basic reproduction number is computed as the integral of this kernel
[14, 13].

The restriction to SIR models with next generation matrix of rank-one renders the con-
nection between the two approaches very elementary and yields powerful explicit formulas –
see (18) and (17) below.

¶Note that this paper considers the renewal equation formulation, and not just the SIR ODE model.
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Contents. Section 2 recalls the definition of SIR-PH models. Section 3 computes the age
of infection kernel for these models with one susceptible class, when the “new infections"
matrix B is of rank one. Section 4 states an extension to the case of several susceptible
compartments. Conclusions and further work are sketched in section 5.

§2. SIR-PH epidemic models

The SIR-PH (phase-type) epidemic models [22] are a particular case of the (A, B) Arino-
Brauer epidemic models studied in [4, 3], in which there is only one input class s (and, less
importantly, only one output class r). One may think of this class of models as of processes
in which the class I has been replaced by a transient Markov chain, the time of transition of
which models the law (distribution) of the total infectious period. The modeling of infectious
laws more general than the exponential is an old concern in epidemiology– see for example
[19] and references therein. Our concern is not only statistical, but also in identifying laws
(principles) which hold for large classes of models. Assuming one input class allows decom-
posing the basic reproduction number R0, defined as the expected number of secondary cases
produced by a typical infectious individual during its time of infectiousness– see [17], which
serves also as stability threshold of the DFE, as

R0 = sd f eR, (1)

where sd f e is the number of susceptibles at the DFE. R is called basic replacement number
(of one susceptible individual). These models include a large number of epidemic models,
like for example for COVID and ILI (influenza like illnesses). After further ignoring certain
quadratic terms for the varying population model [3], we arrive at a SIR-PH model, defined
by:

s′(t) = −s(t)
→

i (t)β + Λ − (Λ + γs) s(t) + γrr(t), βi = (B1)i =
∑

j

Bi, j,

r′(t) =
→

i (t)a + s(t)γs − (γr + Λ)r(t), a = (−A)1 (2)
→

i
′

(t) =
→

i (t)
[
s(t) B + A − Diag [δ + Λ1]

]
:=
→

i (t) [s(t)B − V] .

Here,

1. s(t) ∈ R+ represents the set of individuals susceptible to be infected (the beginning
state).

2. r(t) ∈ R+ models recovered individuals (the end state).

3. γr gives the rate at which recovered individuals lose immunity, and γs gives the rate
at which individuals are vaccinated (immunized). These two transfers connect directly
the beginning and end states (or classes).

4. the row vector
→

i (t) ∈ Rn represents the set of individuals in different disease states.

5. Λ > 0 is the per individual death rate, and it equals also the global birth rate (this is
due to the fact that this is a model for proportions).
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6. A is a n × n Markovian sub-generator matrix which describes transfers between the
disease classes. Recall that a Markovian sub-generator matrix for which each off-
diagonal entry Ai, j, i , j, satisfies Ai, j ≥ 0, and such that the row-sums are non-positive,
with at least one inequality being strict. §

The fact a Markovian sub-generator appears in our “disease equations" suggests that
certain probabilistic concepts intervene in our deterministic model, and this is indeed
the case–see below. Note also that typical epidemic models satisfy Ai, jA j,i = 0, i , j,
and so this matrix may be arranged to be triangular.

7. δ ∈ R+n is a column vectors giving the death rates caused by the epidemic in the disease
compartments. The matrix −V , which combines A and the birth and death rates Λ, δ,
is also a Markovian sub-generator.

8. B is a n × n matrix (called sometimes “new infections" matrix). Each entry Bi, j, mul-
tiplied by s, represents the force of infection from the disease class i onto class j. We
will denote by β the vector containing the sum of the entries in each row of B, namely,
β = B1. Thus, sβi represents the total force of infection from the disease class i.

Finally, s(t)
→

i (t)β represents the total flux which must leave class s.
The matrices B and −V , intervene in the formulas related to the next generation matrix
approach.

Remark 1. 1. Note the factorization of the equation for the diseased compartments
→

i ,
which ensures the existence of a fixed point where these compartments vanish, and

implies a representation of
→

i in terms of s:
→

i (t) =
→

i (0)e−tV+B
∫ t

0 s(τ)dτ =
→

i (0)e
[
−tId+BV−1

∫ t
0 s(τ)dτ

]
V . (3)

In this representation intervenes an essential character of our story, the matrix BV−1,
which is proportional to the next generation matrix sd f eBV−1.

2. When B = β
→
α, we are in the interesting case when B has rank one. Epidemiologically,

this means that each component of the vector of fluxes of infection sβ is distributed
in the same way to the infection classes, following the same probability vector

→
α. A

typical case is
→
α = (1, 0, 0, ...), meaning that all the infected start in the same first class,

called latent.
In this case, it is known by the Arino-Brauer formula [2] generalized in [3] that

R0 = λPF(sd f eBV−1) = sd f e
→
αV−1β, (4)

where λPF denotes the Perron-Frobenius eigenvalue (positive eigenvalue of maximum
modulus). Note the proof is very simple. The eigenvector must be v = β, and plugging
β in sd f eβ

→
αV−1v = R0v yields the result.

3. Following [3], we have chosen to call the models studied here SIR-PH-FA (adding FA
for first approximation), to differentiate them from their version with varying popula-
tion.

§Alternatively, −A is a non-singular M-matrix [2], i.e. a real matrix V with vi j ≤ 0,∀i , j, and having eigenvalues
whose real parts are nonnegative [21].
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§3. Associated Markovian semi-groups, age of infection kernels, and an
R formula for SIR-PH-FA models with one susceptible class and B of

rank one

We show here that when B has rank one, SIR-PH-FA models have an associated explicit age
of infection kernel, which allows in particular obtaining R via an integral. We may say that
rank one SIR-PH-FA epidemic models lie in the intersection of the ODE/Markovian and the
non-Markovian/renewal models. Alternatively, they are precisely the renewal models with
a matrix-exponential kernel. The equivalence of the two approaches in this simple context
is proved concisely below; it may also be read between the lines of the wider scope papers
[11, 15].

Our attention to this subject was drawn by formulas on [7, pg. 3] for the “distributed
delay/renewal/age of infection kernels" for particular cases of the SIR and SEIR models.
These authors assign as an exercise to extend their formulas to other models; it turned out
later that determining which models to extend to was part of the exercise. Six years later
the exercise was first solved by Champredon-Dushoff-Earn [10] for Erlang-Seir models. We
provide below a further extension to the case of SIR-PH-FA models with B of rank one – see
also [11, Thm. 2.2], [15] for related results.

Proposition 1. Let ĩ(t) =
→

i (t)β denote the total force of infection of a SIR-PH-FA model (2)
with one susceptible class, without loss of immunity, i.e. γr = 0 (so that r(t) does not affect
the rest of the system), and with B = β

→
α of rank one. Then

1. The solutions of the ODE system (2) satisfy also an integro-differential “SI system" of
two scalar equationss′(t) = Λ − (Λ + γs) s(t) − s(t)̃i(t)

ĩ(t) =
→

i (0)e−tVβ +
∫ t

0 s(τ)̃i(τ)a(t − τ)dτ,
(5)

where
a(τ) =

→
αe−τVβ, (6)

with −V = A − (Diag [δ + Λ1]) (it may be checked that this fits the formula on page 3
of [7] for SEIR when Λ = 0, δ = 0). ‡

2. The basic replacement number R has an integral representation

R =

∫ ∞

0
a(τ)dτ =

∫ ∞

0

→
αe−τVβdτ =

→
α V−1 β. (7)

Proof: 1. The non-homogeneous infectious equations may be transformed into an inte-
gral equation by applying the variation of constants formula. The first step is the solution of
the homogeneous part. Denoting this by Γ(t), it holds that

→

Γ
′

(t) = −
→

Γ(t)V =⇒
→

Γ(t) =
→

Γ(0)et(−V). (8)

‡a(t) is called “age of infection/renewal kernel; see [16, 6, 7, 12, 10, 11, 15] for expositions of this concept.
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The variation of constants formula implies then that
→

i (t) satisfies the integral equation:

→

i (t) =
→

i (0)e−tV +

∫ t

0
s(τ)

→

i (τ)Be−(t−τ)Vdτ. (9)

Now in the rank one case B = β
→
α, and (9) becomes

→

i (t) =
→

i (0)e−tV +

∫ t

0
s(τ)

→

i (τ)β
→
αe−(t−τ)Vdτ. (10)

Finally, multiplying both sides on the right by β and recalling that ĩ(t) =
→

i (t)β yields the
result.

2. By the “survival method" ‡ , R may be obtained by integrating Γ(t) with Γ(0) =
→
α.

A direct proof is also possible by noting that all eigenvalues of the next generation matrix
except one are 0 [2, 3]. □

Remark 2. When
→

Γ(0) is a probability vector, (8) has the interesting probabilistic interpre-
tation of the survival probabilities in the various components of the semigroup generated
by the Metzler/Markovian sub-generator matrix −V (which inherits this property from the

phase-type generator A). Practically,
→

Γ(t) will give the expected fractions of individuals who
are still in each compartment at time t.
Remark 3. We may relate (10) to the age of infection equation of the distributed delay/renewal
model, by noting that it holds that

→

i (t) =
∫ t

−∞

s(τ)̃i(τ)a(t − τ)dτ, (11)

provided that ĩ(τ) on the interval (−∞, 0] is k
s0
δ0(τ),where δ0(τ) denotes the generalized Dirac

function, and that
→

i (0) = k
→
α. This second equation is related to [10, (2.7b),(2.8),(2.9)] and

[7, (1)]. § Equations like (11), called DD (distributed delay) equations appear already in
the founding paper [20], which is quite natural. Indeed, if it were known that infections arise
precisely τ0 units of time after a contact, then the second equation of the SI model would
involve the Dirac kernel a(τ) = δτ0 (τ). But, since the value of τ0 is never known, it is natural
to replace the Dirac kernel by a continuous one.
Remark 4. 1. The fact that DD systems can be approximated by ODE systems, by ap-

proximating the delay distribution via one of Erlang, and more generally, of matrix-
exponential type, has long been exploited in the epidemic literature, under the name of
"linear chain trick" (which has roots in the Erlangization of queueing theory)– see for
example [26, 25, 11, 8, 18, 1, 15] for recent contributions and further references. The
opposite direction however, i.e. the solution of the exercise in [7] of identifying the
kernels associated to ODE models, seems not to have been resolved in this generality,
prior to our paper.

‡This is a first-principles method, whose rich history is described in [16, 13]– see also [10, (2.3)], [11, (5.9)].
§In fact, these authors work with the related incidence flux between the s and

→

i variables Incid := s
→

i b, denoted
by i(t) in [10], and by F(t) in [7].
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2. Finally, for DD models, normalizing the kernel by its integral R0 yields the density
of the “intrinsic generating interval" for the age of infection [9, 10, 15]: g(t) = a(t)

R0
=

→
αe−τVβ
R0

–see [10, (2.6)].

§4. Extension to several susceptible compartments and time-dependent
inputs

We show here that SIR-PH epidemic models with two or more susceptible compartments may
also satisfy renewal type integro differential equations.

Consider the ODE model with two susceptible classes, defined by:

→

i
′

(t) =
→

i (t)
[
s1(t) B1 + s2(t) B2 + A − Diag (Λ(t)1 + δ)

]
:=
→

i (t) B̃(t) −
→

i (t)V,

s′1(t) = Λ1(t) + γr,1r(t) − s1(t)
[
→

i (t)β1 + Λ(t) + γs

]
, β1 = B11,

s′2(t) = Λ2(t) + γr,2r(t) − s2(t)
[
→

i (t)β2 + Λ(t) + γs

]
, β2 = B21,

r′(t) =
→

i (t)a + (s1(t) + s2(t))γs − (γr + Λ(t))r(t), a = (−A)1, (12)

where we put
→

i = (i1, i2), B̃(t) =
∑

i si(t)Bi,Λ = Λ1 + Λ2, δ =


δ1
δ2
...

 , γr = γr,1 + γr,2. Note that

N(t) = s1(t) + s2(t) + r(t) +
→

i (t)1 satisfies N′(t) = Λ(t)(1 − N(t)) −
→

i (t)δ.

Assume further that Bi = βi
→
αi, i = 1, 2, put B̃i(t) = βi(si(t)

→
αi), i = 1, 2, and put

B̃(t) =
∑

i

B̃i(t) :=
→

β

(
s1(t) 0

0 s2(t)

)
→
α, where recall that

→

β =
(
β1 β2

)
,
→
α =

→α1
→
α2

 . (13)

The variation of constants formula applied to (12) implies that
→

i (t) satisfies the integral
equation:

→

i (t) =
→

i (0)e−tV +

∫ t

0

→

i (τ)B̃(τ)e−(t−τ)Vdτ =
→

i (0)e−tV +

∫ t

0

→

i (t − τ)B̃(t − τ)e−τVdτ

: =
→

i (0)e−tV +

∫ t

0

→

i (t − τ)K̃(t, τ)dτ, K̃(t, τ) := B̃(t − τ)e−τV . (14)

We will call K̃(t, τ) implicit kernel, to emphasize the fact that it depends still on the unknown
si(t).

When Bi = βi
→
αi, i = 1, 2, putting ĩi(t) =

→

i (t)βi, i = 1, 2 (14) becomes

→

i (t) =
→

i (0)e−tV +

∫ t

0

 2∑
i=1

si(τ)̃ii(τ)
→
αie−(t−τ)V

 dτ. (15)
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Multiplying further by βk, k = 1, 2 and putting ai, j(t) =
→
αie−tVβ j, i, j = 1, 2, yields a

system of two equations for ĩk(t) =
→

i (t)βk, k = 1, 2:̃i1(t) =
→

i (0)e−tVβ1 +
∫ t

0

[
s1(τ)̃i1(τ)a1,1(t − τ) + s2(τ)̃i2(τ)a2,1(t − τ)

]
dτ

ĩ2(t) =
→

i (0)e−tVβ2 +
∫ t

0

[
s1(τ)̃i1(τ)a1,2(t − τ) + s2(τ)̃i2(τ)a2,2(t − τ)

]
dτ

(16)

We may conclude that proposition 1 extends as follows:

Proposition 2. Consider a SIR-PH-FA model (12) with two susceptible classes with Bi =

βi
→
αi, i = 1, 2, with constant input inflows Λ1,Λ2, and which satisfies the conditions of [23].

Then, it holds that :

1. The solutions of (12) satisfy also an integro-differential system

s′1(t) = Λ1 + γr,1r(t) − s1(t)
[
→

i (t)β1 + Λ + γs

]
, β1 = B11,

s′2(t) = Λ2 + γr,2r(t) − s2(t)
[
→

i (t)β2 + Λ + γs

]
, β2 = B21,

r′(t) =
→

i (t)a + (s1(t) + s2(t))γs − (γr + Λ)r(t), a = (−A)1

ĩ(t) =
→

i (0)e−tV
→

β +
∫ t

0 ĩ(τ)Diag(s(τ))a(t − τ)dτ,

(17)

where a(τ) =
(
si(τ)ai, j(τ)

)
i, j=1,2

, s(τ) = (s1(τ), s2(τ)).

2. The DFE satisfies (rd f e =
γs

Λ+γr+γs
, si

d f e =
Λ+γs

Λi+γr,ird f e
, i = 1, 2), and the basic reproduction

number R0 is the Perron-Frobenius eigenvalue of the two by two matrixs1
d f e
→
α1V−1β1 s1

d f e
→
α1V−1β2

s2
d f e
→
α2V−1β1 s2

d f e
→
α2V−1β2

 = →α (
s1

d f e 0
0 s2

d f e

)
V−1

→

β, (18)

with an obvious generalization to the case of several compartments.

§5. Conclusions and further work

Solving the exercise of [7] revealed that the (A, B) Arino-Brauer epidemic models with B of
rank one have the remarkable property of having a natural associated “age of infection kernel"
which implies a very simple formula for R. § This continues to be true for models with
several susceptible classes, and is of considerable interest for epidemic models structured by
the age of the individuals.

Another question worth further research is whether an age of infection kernel may be
associated to (A, B) Arino-Brauer epidemic models with one susceptible class, but with a
matrix B of rank bigger than 1.

§Thus, these deterministic models have also one foot in the stochastic world, which reveals itself when all the
infectious equations are grouped into one equation.
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