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MONOTONE OPERATORS IN
MATHEMATICAL FINANCE:

NONLINEAR BLACK-SCHOLES EQUATION

Bénédicte Alziary and Peter Takáč

Abstract. We treat nonlinear parabolic Cauchy problems for valuation of options in
financial markets, especially problems of Black-Scholes-type with nonlinear diffusion.
Typically, methods based on viscosity solutions are used for determining the solvabil-
ity of such fully nonlinear problems. However, the special form of these problems in
Financial Mathematics enables us to transform them into abstract initial value problems
with monotone second-order differential operators to which classical results for abstract
parabolic Cauchy problems can be applied. The transformation from the unknown option
price P(S , t) to its partial derivative ∆(S , t) = ∂P

∂S , called the Greek ∆, is very simple. The
standard theory of monotone operators in Hilbert spaces (of type L2 with a weight) is
applicable to the nonlinear Cauchy problem for the new unknown function ∆(S , t) of the
stock price S at time t.
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§1. Introduction

In this short article we treat a simple application of the well-known classical theory of non-
linear monotone operators in Hilbert and (reflexive) Banach spaces to nonlinear Black-
-Scholes-type problems that are abundant in Mathematical Finance, such as classical non-
linear Black-Scholes models for option valuation with transaction costs. We would like to
explain the main idea behind the transformation of (typically) a fully nonlinear parabolic
evolutionary problem that is treated mostly by relatively newer methods based on viscos-
ity solutions in a Banach space of continuous functions into a divergence-type quasi-linear
parabolic problem whose weak solutions are obtained by a standard application of nonlinear
monotone operators. To our best knowlwdge, in Mathematical Finance this idea was used
for the first time in the work of A. Bensoussan, B.-G. Jang, and S. Park [8] and subsequently
developed further in V. Barbu [2] and V. Barbu, C. Benazzoli, and L. Di Persio [3] and
V. Barbu [4]. We base our method on a single nonlinear Black-Scholes equation that was
derived a quarter of a century ago by G. Barles and H. M. Soner [6] for valuation of op-
tions with transaction costs. The goal of their work was to obtain a precise formula for the
implied volatility σ̂(S , t) = σ̂

(
S 2 ∂2P

∂S 2 , t
)

in [6, Eq. (1.2) on p. 372]. This expression for im-
plied volatility replaces the classical constant volatility σ = const > 0 that has been used in
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classical linear Black-Scholes models with the linear Black-Scholes equation for the option
price P = P(S , t):

∂P
∂t

(S , t) +
1
2
σ2 S 2 ∂

2P
∂S 2 (S , t) + (r − q) S

∂P
∂S

(S , t) = r P(S , t)

for 0 < S < ∞ and −∞ < t < T ,
(1)

with the independent variables S and t, the stock price and time, respectively, and with the
following additional quantities (constants) as given data: the maturity time of the option T
(0 < T < ∞); the risk free rate of interest r ∈ R; the instantaneous drift of the stock price
returns r − q ≡ −qr ∈ R. Consequently, the classical linear Black-Scholes equation, eq. (1)
above, is transformed into the following nonlinear parabolic equation (i.e., Eq. (1.2) on
p. 372 in [6]):

∂P
∂t

(S , t) +
1
2
σ̂2

(
S 2 ∂

2P
∂S 2 , t

)
S 2 ∂

2P
∂S 2 (S , t) + (r − q) S

∂P
∂S

(S , t) = r P(S , t) (2)

for S > 0 and t < T , with the following formula for the implied volatility σ̂(S , t),

σ̂(S , t) = σ̂
(
S 2 ∂

2P
∂S 2 , t

)
= σ̂(0,T )

[
1 + ς

(
er(T−t) a2 S 2 ∂

2P
∂S 2 (S , t)

)]1/2

(3)

for S > 0 and t < T . Here, σ̂(0,T ) > 0 is a constant, ς : (−∞,+∞) → R+ is a nonlinear
volatility correction, a continuous function that is continuously differentiable on R \ {0} =
(−∞, 0)∪ (0,+∞) and satisfies the differential equation in G. Barles and H. M. Soner [6, Eq.
(3.2), p. 377] subject to the initial condition ς(0) = 0. An important property of the function ς
is that the function A 7→ A (1 + ς(A)) : R→ R is monotone nondecreasing which guarantees
the parabolicity hypothesis Hpar formulated below in connection with eq. (2) above. Finally,
a > 0 is an “economicaly” relevant parameter related to the risk aversion factor and the
proportional transaction cost (see [6, p. 372]).

Thus, while keeping the nonlinear Barles-Soner equation (2) in mind, with the implied
volatility from eq. (3), we will focus on the nonlinear Black-Scholes equation of the following
more general type:

∂P
∂t

(S , t) + Σ
(
S , S

∂P
∂S

, S 2 ∂
2P
∂S 2 , t

)
+ (r − q) S

∂P
∂S

(S , t) = r P(S , t) (4)

for S > 0 and t < T , with the implied volatility being included in the function Σ : R+ × R ×
R × (−∞,T ]→ R which is assumed to satisfy the following basic parabolicity hypothesis,
Hypothesis Hpar. Given any fixed triple (S , A1, t) ∈ R+ × R × (−∞,T ], the function A2 7→

Σ(S , A1, A2, t) : R→ R is monotone increasing. In other words, the function

A2 7−→ Σ

(
S , S

∂P
∂S

, A2 , t
)

: R→ R is monotone increasing in the variable

A2 = S 2 ∂
2P
∂S 2 ∈ R , A2 = S

∂

∂S

(
S
∂P
∂S

)
− S

∂P
∂S
≡

(S ∂

∂S

)2

−

(
S

∂

∂S

) P(S , t) .
(5)
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In our approach to the nonlinear Black-Scholes equation (4), we will mostly assume
that the restricted function A2 7→ Σ(S , A1, A2, t) : R → R is continuously differentiable
with respect to the variable A2 ∈ R. Consequently, our Hypothesis Hpar is equivalent with
∂Σ
∂A2

(S , A1, A2, t) ≥ 0 for every quadruple (S , A1, A2, t) ∈ R+ × R × R × (−∞,T ].
Under the monotonicity hypothesis Hpar above, the nonlinear Black-Scholes equation (4)

is typically treated by well-known methods using viscosity solutions; see, e.g., the monograph
by G. Barles [5] or the article by G. Barles and H. M. Soner [6, Appendix B, pp. 388–398].

In our present work we take advantage of the classical methods using nonlinear mono-
tone operators in Hilbert and (reflexive) Banach spaces in order to produce weak solutions to
our nonlinear Black-Scholes models of type (4). We will present and explain the main ideas
of our approach in the next section.

§2. Preliminary calculations

We denote x = log S for the stock price S > 0 and calculate S = ex for the logarithmic stock
price x ∈ R = (−∞,+∞) which yields further for the new function p(x, t) = P(S , t):

∂p
∂x
= S

∂P
∂S

,
∂2 p
∂x2 = S

∂P
∂S
+ S 2 ∂

2P
∂S 2 , and

∂2 p
∂x2 −

∂p
∂x
= S 2 ∂

2P
∂S 2 . (6)

Let us consider the following new function which we call the flux function,

F ≡ F

(
x,
∂p
∂x

,
∂2 p
∂x2 , t

)
= Σ

(
S , S

∂P
∂S

, S 2 ∂
2P
∂S 2 , t

)
≡ Σ

(
ex ,

∂p
∂x

,
∂2 p
∂x2 −

∂p
∂x

, t
)
. (7)

It takes into account only the sensitivity of the option price p depending on the change of
the stock price S at time t (−∞ < t < T < +∞), expressed through the Greek “Delta” ∆,
∆

def
= ∂P

∂S , at time t ∈ (−∞,T ). For the meaning of ∆ in a hedging strategy in Mathematical
Finance, the reader is referred to J.-P. Fouque, G. Papanicolaou, and K. R. Sircar [9, §5.3,
pp. 99–102] or to J. C. Hull [10, §19.4, pp. 401–407].

In accordance with the sensitivity ∆ we introduce the new function ∆x
def
=

∂p
∂x = S ∂P

∂S
= S ∆ at time t ∈ (−∞,T ); we call it the “relative sensitivity”. We propose to replace
the unknown option price P, i.e., the function P(S , t) = p(x, t), governed by the nonlinear
parabolic equation (4), by the relative sensitivity

∆x =
∂p
∂x

(x, t) = S
∂P
∂S

(S , t) = S ∆ (8)

at time t ∈ (−∞,T ). The corresponding parabolic equation for the unknown function ∆x(x, t)
is derived by applying the partial derivative ∂

∂x = S ∂
∂S to equation (4), thus obtaining

∂

∂t
∆x(x, t) +

d
dx

F

(
x, ∆x ,

∂

∂x
∆x , t

)
+ (r − q)

∂

∂x
∆x(x, t) = r∆x(x, t) (9)

for x ∈ R and t < T , with the implied volatility being included in the functions
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F : R × R × R × (−∞,T ]→ R and Σ related by eq. (7) above. We remark that

d
dx

F

(
x, ∆x ,

∂

∂x
∆x , t

)
=
∂F

∂x

(
x, ∆x ,

∂

∂x
∆x , t

)
+
∂F

∂∆x

(
x, ∆x ,

∂

∂x
∆x , t

)
·
∂

∂x
∆x +

∂F

∂Γx

(
x, ∆x ,

∂

∂x
∆x , t

)
·
∂

∂x
Γx

with the substitution Γx
def
= ∂

∂x ∆x related to the Greek “Gamma” Γ, Γ def
= ∂2P

∂S 2 =
∂∆
∂S at time

t ∈ (−∞,T ),

Γx = S
∂

∂S

(
S
∂P
∂S

)
= S

∂P
∂S
+ S 2 ∂

2P
∂S 2 = S ∆ + S 2 Γ ,

so that

F (x, ∆x ,Γx , t) ≡ F

(
x, ∆x ,

∂

∂x
∆x , t

)
with Γx =

∂

∂x
∆x .

Next, we have to determine a suitable function space H for the function ∆x( · , t) at every
time t ∈ (0,∞). To this end, we begin with the asymptotic behavior of the function x 7→
∆x(x, t) as x → ±∞. We recall that ∆x(x, t) = S ∆(S , t) = S ∂P

∂S with the terminal conditions
P(S ,T ) = (S −K)+ and P(S ,T ) = (K−S )+ for the European call and put options, respectively,
at the expiration time t = T . For these two options we have ∆(S ,T ) = 0 for 0 ≤ S < K
and ∆(S ,T ) = 1 for K < S < +∞. These conditions are equivalent to ∆x(x,T ) = 0 for
−∞ < x < log K and ∆x(x,T ) = ex for log K < x < +∞, respectively. Consequently, after the
substitution

u(x, t) def
= ∆x(x, t) −

1
2

ex (1 + tanh x) = ∆x(x, t) − ex φ(x) (10)

for all (x, t) ∈ R × (−∞,T ) , where φ(x) def
=

ex

ex + e−x ,

we obtain
u(x, t)

ex =
∆x(x, t)

ex − φ(x) −→ 0 as x→ ±∞ .

Thus, we obtain the following asymptotic behavior for the function u(x, t) defined in eq. (10):

u(x, t)
ex −→ 0 as x→ ±∞ . (11)

Finally, in order to obtain a parabolic equation for the unknown function u(x, t), we insert
the function ∆x(x, t) = ex φ(x) + u(x, t) into the semilinear Black-Scholes-type problem in
eq. (9), thus arriving at

∂u
∂t

(x, t) +
d
dx

F̃
(
x, u(x, t) ,

∂u
∂x

(x, t) , t
)
+ (r − q)

∂u
∂x

(x, t) − r u(x, t)

= r ex φ(x) − (r − q)
d
dx

(ex φ(x)) for x ∈ R and t < T ,
(12)

where we have substituted the following function for the flux,

F̃
(
x, u(x, t) ,

∂u
∂x

(x, t) , t
)

def
= F

(
x, u(x, t) + ex φ(x) ,

∂u
∂x
+

d
dx

(ex φ(x)) , t
)
. (13)
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Let us denote by w : R → (0,∞) the weight function w(x) def
= e−µ|x| for x ∈ R, where

µ ∈ (0,∞) is a suitable positive constant that will be specified later. We choose the following
space setting for the parabolic equation (12), namely, the weighted L2-type Lebesgue space
H = L2(R;w) which is a Hilbert space endowed with the inner product

( f , g)H ≡ ( f , g)L2(R;w)
def
=

∫ +∞
−∞

f (x) g(x) · w(x) dx for f , g ∈ H .

This inner product induces the norm in H, ∥ f ∥H
def
= ( f , f )1/2

H =
(∫ +∞
−∞
| f (x)|2 w(x) dx

)1/2
< ∞ .

In order to guarantee that the terminal value u0 : R→ R,

u0(x) = ∆x(x,T ) − ex φ(x) = ex ∆ (ex,T ) − ex φ(x) = ex (∆ (ex,T ) − φ(x))

for the European call option belongs to H, from now on we assume that µ > 2.

§3. Main results

In order to rewrite the “backward” Black-Scholes problem (12) as a standard (“forward”)
evolutionary equation with a prescribed initial value u0 ∈ H, we relabel the actual time t,
−∞ < t ≤ T , by τ and use the letter t to denote the time to maturity, that is, t = T − τ ≥ 0. In
addition, since we will be concerned only with solutions on the bounded time interval [0,T ],
from now on we will view the letter T (the maturity time of the option) as the terminal time,
0 < T < ∞, while keeping the initial time at zero. This forces us to replace the unknown
function u(x, τ) by u(x, t) and the operator ∂

∂τ
by − ∂

∂t . Accordingly, for the flux function F̃ in
eq. (13) we substitute

F
(
x, u(x, t) ,

∂u
∂x

(x, t) , t
)

def
= F̃

(
x, u(x, t) ,

∂u
∂x

(x, t) , T − t
)

(14)

= F

(
x, u(x, t) + ex φ(x) ,

∂u
∂x
+

d
dx

(ex φ(x)) , T − t
)

whenever t ∈ [0,T ]. Consequently, the “backward” Black-Scholes terminal value problem
(9) (and (4), as well) becomes the following initial value problem for the unknown function
u : R × [0,T ]→ R, u = u(x, t),

∂u
∂t

(x, t) −
d
dx

F
(
x, u(x, t) ,

∂u
∂x

(x, t) , t
)
− (r − q)

∂u
∂x

(x, t) + r u(x, t)

= − r ex φ(x) + (r − q)
d
dx

(ex φ(x)) for x ∈ R and 0 ≤ t ≤ T ;
(15)

u(x, 0) = u0(x) for x ∈ R . (16)

This is the kind of problems treated in the monographs by V. Barbu [1] and J.-L. Lions [11].
Our hypotheses on the rather general flux function F : R × R × R × [0,T ] → R below

allow us to take advantage of now classical results in [1, Chapt. III, §§4.2, p. 167] and in [11,
Chapt. 2, §1.4, pp. 162–163], Théorème 1.2 and Théorème 1.2 bis. It is easy to see from
eq. (14) how to reformulate these hypotheses for the function F : R × R × R × [0,T ] → R
introduced in eq. (7) in terms of the original flux function Σ.
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We impose the following hypotheses on F:
Hypothesis Hcont. For every triple (A1, A2, t) ∈ R × R × [0,T ], the function F( · , A1, A2, t) :
R → R is Lebesgue measurable. Furthermore, for almost every fixed x ∈ R, the function
F(x, ·, ·, ·) : R × R × [0,T ]→ R is continuous and it satisfies the linear growth condition

|F(x, A1, A2, t)| ≤ C1 (|A1| + |A2|) +C0 for all (A1, A2, t) ∈ R × R × [0,T ] (17)

with some constants C0,C1 ∈ (0,∞) which are independent from the variables (x, A1, A2, t) ∈
R3 × [0,T ].

Hypothesis Hmono. For almost every fixed x ∈ R, the function F(x, ·, ·, ·) : R×R×[0,T ]→ R
is continuously (partially) differentiable with respect to the variables A1 and A2 with the
partial derivatives ∂F

∂A1
and ∂F

∂A2
, respectively, satisfying∣∣∣∣∣ ∂F

∂A1
(x, A1, A2, t)

∣∣∣∣∣ ≤ c2 < ∞ and (18)

0 < c1 ≤
∂F
∂A2

(x, A1, A2, t) ≤ c2 < ∞ for all (A1, A2, t) ∈ R × R × [0,T ] (19)

with some positive constants c1, c2 ∈ R, 0 < c1 ≤ c2 < ∞, which are independent from the
variables (x, A1, A2, t) ∈ R3 × [0,T ]; cf. Hypothesis Hpar.

Next, we define the nonlinear analogue of the Black-Scholes operator A(t) : V → V ′

(cf. eq. (1)), where V stands for the Sobolev space of all absolutely continuous functions
f : R → R such that f , f ′ ∈ H = L2(R;w) endowed with the Sobolev norm ∥ f ∥V

def
=[

( f , f )H + ( f ′, f ′)H
]1/2 < ∞ .

Naturally, V ′ denotes the dual space of V with respect to the duality induced by the scalar
product ( · , · )H on H. Thus, V ↪→ H = H′ ↪→ V ′ is a Gel’fand triple which consists of three
Hilbert spaces; see J.-L. Lions [11, Remarque 1.2, Chapt. 2, §1.1, p. 156]. Given any fixed
time t ∈ [0,T ], for each v ∈ V we defineA(t)v ∈ V ′ by

(A(t)v, w)H =∫ +∞

−∞

[
F(x, v(x), v′(x), t)w′(x) + (r − q) v′(x)w(x) + r v(x)w(x)

]
· w(x) dx

− µ

∫ +∞

−∞

F(x, v(x), v′(x), t)w(x) sgn(x) · w(x) dx for all w ∈ V .

(20)

Of course, we use the symbol ( · , · )H also for the unique extension of the inner product on
H × H to the duality on the Cartesian products V × V ′ and V ′ × V . It follows directly from
Hypothesis Hcont, ineq. (17), thatA(t) maps V into its dual space V ′.

Lemma 1 (The Operator A(t).). The mapping A(t) : V → V ′ is demicontinuous, i.e.,
continuous as a mapping from the strong topology on V to the weak topology on V ′. Moreover,
there are some constants γ, γ1 ∈ (0,∞) and γ0 ∈ R, all independent from time t ∈ [0,T ], such
that the mappingA(t) + γI : V → V ′ is monotone and coercive on V, respectively, i.e., we
have

(A(t)v1 −A(t)v2 , v1 − v2)H + γ ∥v1 − v2∥
2
H ≥ 0 for all v1, v2 ∈ V , (21)
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together with
(A(t)v , v)H + γ ∥v∥

2
H ≥ γ1 ∥v∥

2
V + γ0 for all v ∈ V . (22)

As usual, I denotes the identity mapping on V .
Proof of Lemma 1. Hypothesis Hcont implies that A(t) : V → V ′ is demicontinuous,

by inequality (17) combined with a standard application of Hölder’s inequality and Vitali’s
theorem.

The first inequality, (21), is a direct consequence of the Taylor integral formula

F(x, v1(x), v′1(x), t) − F(x, v2(x), v′2(x), t)

=

[∫ 1

0

∂F
∂A1

(
x, (1 − θ) v1(x) + θ v2(x) , (1 − θ) v′1(x) + θ v′2(x) , t

)
dθ

]
[v1(x) − v2(x)]

+

[∫ 1

0

∂F
∂A2

(
x, (1 − θ) v1(x) + θ v2(x) , (1 − θ) v′1(x) + θ v′2(x) , t

)
dθ

]
[v′1(x) − v′2(x)] ,

whenever v1, v2 ∈ V , combined with inequalities (18) and (19). An analogous formula with
v1 = v ∈ V and v2 = 0 ∈ V , combined with (18) and (19) again and supplemented by
ineq. (17) for the function |F(x, 0, 0, t)| ≤ C0 with (x, t) ∈ R × [0,T ], yields the second
inequality, (22). We refer the interested reader to the survey article by László Simon [12] for
details in calculations leading to the desired inequalities (21) and (22). □

Finally, using these results on the Gel’fand triple V ↪→ H = H′ ↪→ V ′ and the nonlinear
mappingA(t) : V → V ′, we rewrite the initial value problem (15), (16) as the corresponding
abstract problem

∂u
∂t
−A(t)u = f (t) for t ∈ (0,T ) ; u(0) = u0 ∈ H . (23)

The function f : (0,T ) → V ′ is, in fact, equal to the constant (time-independent) function
f (t) ≡ f0 ∈ H, t ∈ (0,T ), given by

f0(x) = − r ex φ(x) + (r − q)
d
dx

(ex φ(x)) for x ∈ R . (24)

Now we are able to apply the general theorem from J.-L. Lions [11, Chapt. 2, §1.4], Théorème
1.2 on pp. 162–163, to obtain our main result:

Theorem 2 (Existence and uniqueness.). Let T ∈ (0,∞) and assume that Hypotheses Hcont
and Hmono are satisfied. Given any initial value u0 ∈ H, there exists a unique weak solution
u : [0,T ]→ H to our initial value problem (23) that has the following properties:

(i) u : [0,T ]→ H : t 7→ u( · , t) is continuous, i.e., u ∈ C([0,T ]→ H), with u(0) = u0.

(ii) u : (0,T ) → V : t 7→ u( · , t) is (strongly) Lebesgue-measurable with the finite
integral

∫ T
0 ∥u( · , t)∥2V dt < ∞ , i.e., u ∈ L2((0,T )→ V).

(iii) The (weak distributional) derivative ∂u
∂t : (0,T ) → V ′ is (strongly) Lebesgue-

-measurable with the finite integral
∫ T

0

∥∥∥ ∂u
∂t ( · , t)

∥∥∥2
V ′ dt < ∞ , i.e., ∂u

∂t ∈ L2((0,T ) → V ′)
or, equivalently, u ∈ W1,2((0,T )→ V ′), thanks to u ∈ C([0,T ]→ H).
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(iv) The partial differential equation (15) is satisfied in the weak sense with all terms
valued in the dual space V ′, that is to say, the abstract equation (23) holds for almost
every t ∈ (0,T ).

Remark 1 (Proof of Theorem 2.). Let us recall that, by Lemma 1, only the perturbed mapping
Aγ(t) = A(t) + γI : V → V ′ satisfies the conclusions of this lemma, provided γ ∈ (0,∞) is
a sufficiently large constant. To adjust our arguments to this fact, let us consider the function
uγ(x, t) = eγt u(x, t) of (x, t) ∈ R × [0,T ], with u(t) ≡ u( · , t) ∈ H for every t ∈ [0,T ] and
u(t) ∈ V for almost every t ∈ (0,T ). From the equation

eγt ∂

∂t
u(t) =

∂

∂t
uγ(t) − γ uγ(t) valued in V ′ for a.e. t ∈ (0,T ),

combined with eq. (23) above, we deduce that the new function uγ : [0,T ]→ H satisfies the
following analogous abstract problem,

∂

∂t
uγ(t) −Aγ(t) uγ(t) = eγt f (t) for t ∈ (0,T ) ; uγ(0) = u0 ∈ H , (25)

where the nonlinear mapping

Aγ(t) : V → V ′ : v 7−→ eγt [
A(t) + γI

] [
e−γt v

]
= eγtA(t)

[
e−γt v

]
+ γ v

possesses all properties of A(t) + γI stated in Lemma 1. Consequently, Theorem 2 applies
also to problem (25) for uγ in place of eq. (23) for u. We refer to V. Barbu [1] [1, Chapt. III,
§2, §§2.1, pp. 123–138] for perturbations of monotone mappings V → V ′ by (real) multiples
of the identity I : V → V ↪→ V ′. ⊓⊔

§4. Applications to nonlinear Black-Scholes equations

Example 1. We have started with the nonlinear model (2) due to G. Barles and H. M. Soner
[6, Eq. (1.2), p. 372] with (variable) implied volatility (3). When rewritten in our notation
from Section 3, Theorem 2, this model takes the form of eq. (15) with the flux function F
given by

F
(
x, u(x, t) ,

∂u
∂x

(x, t) , t
)
≡ F(x, A1, A2, t)

def
=

1
2
σ̂(0,T )2

[
1 + ς

(
ert a2

{
A2 +

d
dx

(ex φ(x)) − (A1 + ex φ(x))
})]

(26)

×

{
A2 +

d
dx

(ex φ(x)) − (A1 + ex φ(x))
}

=
1
2
σ̂(0,T )2

[
1 + ς

(
ert a2

{
∂u
∂x
+

d
dx

(ex φ(x)) − (u + ex φ(x))
})]

×

{
∂u
∂x
+

d
dx

(ex φ(x)) − (u + ex φ(x))
}
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for all (x, A1, A2) ∈ R3 and for all t ∈ [0,T ]. Here, σ̂(0,T ) > 0 is a constant and ς :
(−∞,+∞) → R+ is a nonlinear volatility correction specified in [6, Eq. (3.2), p. 377]. Our
Theorem 2 applies to the Barles-Sonermodel with the correction ς modified in the following
simple manner: We replace the original correction ς from [6, Theorem 3.1, p. 377] by its
simple modification, whenever A ∈ R,

ς̃(A) def
=


ς(A∗) if A ≤ A∗ ;
ς(A) if A∗ ≤ A ≤ A∗ ;
ς(A∗) if A ≥ A∗ ,

where A∗, A∗ ∈ R, respectively, are the starting point and the end point for the modification,
−∞ < A∗ < 0 < A∗ < ∞. Hence, ς(A∗) ≤ ς̃(A) ≤ ς(A∗), by ς being monotone increasing.

We leave the verification of the hypotheses in Theorem 2 to the reader.

Example 2. An interesting highly nonlinear parabolic problem is treated in the work
by A. Bensoussan, K. C. Cheung, Y. Li, and S. C. Ph. Yam [7, Eq. (26), p. 836] on mutual-
-fund management. Taking advantage of an analogous transformation to our substitution
P 7→ ∆ = ∂P

∂S (the Greek “Delta”), where the unknown function V(x, t) is replaced by its (un-
known) partial derivative λ(x, t) = ∂V

∂x , the authors obtain more standard semilinear parabolic
problems [7, Eq. (31), p. 837] and [7, Eq. (33), p. 838] to which they apply Schauder’s fixed
point theorem. Similarly as in Example 1, [6, Eq. (1.2), p. 372], the semilinear parabolic
problem [7, Eq. (31), p. 837] is obtained by an inter-temporal maximization of the sum of the
inter-temporal and the terminal utilities of the management fees to be received.

Example 3. A third nonlinear parabolic problem is obtained in the works by V. Barbu
[2] and V. Barbu, C. Benazzoli, and L. Di Persio [3] and V. Barbu [4], for a stochastic
optimization problem. A convex pay-off functional reflecting a performance criterion in [3,
Eq. (1), p. 520] is minimized with respect to an optimal choice of volatility in [3, Eq. (2),
p. 520], that is, with respect to a control variable u in the volatility. The resulting nonlinear
parabolic equation [3, Eq. (6), p. 521] is a dynamic programming equation to the stochastic
optimal control problem [3, Eq. (1), p. 520]. The unknown (smooth) function φ(x, t) in [3,
Eq. (6), p. 521] is replaced by the new unknown function ψ = ∂φ

∂x which verifies the nonlinear
Cauchy problem in [3, Eq. (8), p. 521]. This problem is of similar nature as our problem
(15), (16) an thus can be treated by tools suggested in Theorem 2 and Lemma 1; cf. [1,
Chapt. III, §§4.2, p. 167], Theorem 4.2, and [11, Chapt. 2, §1.4, pp. 162–163], Théorème 1.2
and Théorème 1.2 bis.
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