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RENORMALIZED SOLUTIONS FOR A
STOCHASTIC p-LAPLACE EQUATION
WITH L' INITIAL DATA

Niklas Sapountzoglou and Aleksandra Zimmermann

Abstract. For 1 < p < oo, we consider a stochastic p-Laplace equation on a bounded
domain with homogeneous Dirichlet boundary conditions. The technical difficulties arise
from the L' random initial data under consideration. We introduce the notion of renor-
malized solutions.
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§1. Introduction

Let (Q, 7, P, (Ft)ref0.17- (B)ref0.17) be a stochastic basis with a complete, countably generated
probability space (Q, , P), a filtration ()ej0,17 C F satisfying the usual assumptions and a
real valued, #;-Brownian motion (8;)o,r]. Let D C R a bounded Lipschitz domain, 7 > 0,
Or = (0,T)x Dand 1 < p < oo. Furthermore, let uy : Q — L'(D) be Fy-measurable and
® € L*(Q x Qr) be progressively measurable. In this contribution, we study the nonlinear
evolution problem:

du — div (\VulP~>Vu)dt = ® dB inQx Or,
u=0 on Q x (0,T) x 8D, (1.1)
u(0,) = ug e L'(Qx D).

The diffusion operator in our equation is the p-Laplace operator for 1 < p < 0, i.e.,
A, () = div (|Vul’~2Vu).

Obviously, A, = A, while A, is a nonlinear monotone operator for p # 2. In the last decades,
there has been an extensive study on (1) (see, e.g., [16], [15], [17], [14] and [4]). In our case,
the main technical difficulty arises from the random initial data in L'(Q x D). In this setting,
variational solutions are out of range and therefore we consider the more general notion of
renormalized solutions which has been introduced by [11] for the study of global existence
and weak stability of the Boltzmann equation. Renormalized solutions of (1) with a determin-
istic right hand side have been studied by many authors, (see, e.g., [7], [5], [8]). Later, this
solution concept has been extended to more general problems of parabolic, elliptic-parabolic
and hyperbolic type (see, e.g., [9],[10], [6], [1]). For stochastic conservation laws the notion
of entropy solutions has been considered in [3]. For a quasilinear, degenerate hyperbolic-
parabolic SPDE with L! random initial data, the well-posedness and regularity of kinetic



254 Niklas Sapountzoglou and Aleksandra Zimmermann

solutions has been studied in [13], but, to the best of our knowledge, these results do not
apply in the situation of (1). Our aim is to extend the notion of renormalized solutions for the
stochastic setting. The well-posedness of (1.1) in the framework of renormalized solutions is
the subject of a forthcoming research article.

The well-posedness for p-measurable initial data g € L*(QxD)is an easy consequence
of classical well-posedness results:
Theorem 1. Let the conditions in the introduction be satisfied. Furthermore, let uy €
L*(Q X D). Then there exists a unique strong solution to (1.1), i.e., there is an F;-adapted
stochastic process u : Q x [0,T] — Wé’p(D) such that u € LP(Q;LP(0,T; W(;"”(D))) N
L*(Q; C([0, T1; L*(D))), u(0,-) = ug in L*(Q x D) and

d f
u(t) — up — f div (|Vu|p_2Vu) ds = f D dp
0 0

in Wb (D) + LZ(D)for allt € [0,T] and a.s. in Q.
Remark 1. Since we know from all terms except the term fot div (|Vu|P2Vu) ds that these

terms are elements of L2(D) for all ¢ € [0, 7] and a.s. in Q it follows that fot div([VulP2Vu) ds €
L*(D) for all ¢ € [0, T] and a.s. in Q. Therefore this equation is an equation in L?(D).

Proof. This result is a consequence of [14], Chapter II, Theorem 2.1 and Corollary 2.1. We
only have to check the assumptions of this theorem. Following the notations therein, we set
V= Wé"’(D) NL*(D)inthecase 1 < p<2andV = Wé’p(D) in the case p > 2, H = L*(D),
E=R,A:V > V" A@) = —div(Vul’2Vu), B = ®, f(1,w) = 2 + ||B(t,w)|3 for almost
each (f,w) € (0,T) X Q and z = 0. Then we have Ly(E; H) = L(R, L*(D)) = L*(D).

We remark that A does not depend on (¢, w) € [0, T] X Q and that B does not depend on u € V.
Obviously, conditions (A1), (A2) and (AS) in [14] are satisfied. Moreover, in the case p > 2
the validity of conditions (A3) and (A4) is well known in the theory of monotone operators.
Therefore we only consider the case 1 < p < 2.

In this case we check condition (A3). Using the norms

._ p r\? —
el = (101 + W05 iy, 2= ¥l
we have
2 2
IBI + 21l = I1BIE + 2Ibll, = £ =2+ 2[lif)

=f=2+20l°,, +2loll; = f—2+2[ll +2(Av,0)v- v
Wy (D)

< £+ ll3 + 2¢Av, v)y- v

for all v € V since x” < 1 + x? for all x > 0. This proves condition (A3) fora = K = 2.
Now we check condition (A4). We estimate

-1 -1
1Al < NAGDIw-1 oy < IVl 0 <l

Therefore [14], Chapter II, Theorem 2.1, Corollary 2.1 and Theorem 2.2 provide the existence
of a strong solution to (1.1). O
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§2. Ito formula and renormalization

For two Banach spaces X, Y, let L(X; Y) denote the Banach space of bounded, linear operators
from X to Y.

In order to find an appropriate notion of renormalized solutions to (1.1), we use the methods
of [12] to prove a particular version of the Itd6 formula. For the sake of completeness, we
recall the following regularization procedure:

Lemma 2. Let D ¢ RY be a bounded domain with Lipschitz boundary, 1 < p < oo and
r = min{p, 2}. There exists a sequence of operators

I, : W' (D) + L'(D) = Wy"(D) N LX(D), n e N
such that
i) IL,(v) € Wé’p(D) N L*(D) N C®(D) for allv e W=V (D) + L"(D) and all n € N
ii.) For any n € N and any Banach space
F € {W,"(D), LX(D), W'"7'(D), Wy"(D) n L*(D), W™"¥ (D) + L*(D)}

Il, : F — F is a bounded linear operator such that lim,_« Il = Ir pointwise in F,
where I is the identity on F.

Proof. We follow the ideas of [12], p. 200, Exemple 2.1 and let I1,(v) := (¢, - v) * p,, be the
convolution of the multiplication of v € W~"*'(D) + L' (D) with an appropriate cutoff function
¢, and a standard mollifier p,, with support in By;,(0) for n € N. Then, the assertion follows
using Hardy and Young inequality. O

Proposition 3. Let G € LV (Q x Q7)) ® € L*(Q x Qr) be progressively measurable, uy €
L*(Q x D) be Fo-measurable and u € L*(Q;C([0, T1; L*(D))) n LP(Q; LP(0, T; W(;’p(D)))
satisfying the equality

! !
u(t)—uo—fdiv Gds:fd)dﬁ 2.1
0 0
in L*(D) for all t € [0,T] and a.s. in Q.

Then, for all y € C* ([0, T1xD)and all S € C*(R) with supp(S”’) compact such that S’ (0) = 0
ory(t,x) = 0 for all (t, x) € [0, T] X dD we have

f S @) (t) — S (up)y(0) dx + f f S”(w)VuGy dxds + f f S’ (w)GVydxds
D 0 Jp 0o Jp

=f fS’(u)wCDdxd,B+f fS(u)w,dxds+lf[fS”(u)w(Ddeds 2.2)
o Jp o Jp 2Jo Jp

forallt € [0,T] and a.s. in Q.
Especially for € C*(D) not depending on t we get

f(S(u(t))—S(uo))(//dx+f fS"(u)Vqudxds+f fS'(u)Gdexds
D 0 JD 0o Jp

= f f S’(u)l//d)dxdﬂ+l f f S” (uyy®* dxds
o Jb 2 Jo Jp
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forallt € [0,T] and a.s. in Q.
Proof. We choose the regularizing sequence (I1,,) according to Lemma 2 and set u,, := I1,(x),
ug := I1,(uo), (div G), := II,(div G) and @, := II,(®). We apply the operator II, to both
sides of this equality. Since IT, € L(W~"7"(D) + L*(D); Wé’p (D) N L*(D)), we may conclude
3 !
un(t) — g — f (div G), ds = f ®, dp
0 0

in D, for all t € [0, T] and a.s. in Q. Now we apply pointwise in x € D the classic Itd formula
for h(t,u) := S (u)y(t, x) with respect to the time variable ¢. Integration over D afterwards
yields

| Sowo =S = [ (v 68 @y ds
D

=f fS’(un)zpCD,,dxdﬁ+f fS(un)wrdxds+lf fs”(u,,)wcb,%dxds
0o Jp 0o Jp 2Jo Jp

forall # € [0, T] and a.s. in Q. Again by [12] we may pass to the limit with n — oco. Thus, we
get

| s -sawo - [ v 6.5 W0y
D

=f fS'(u)lﬁ@dxd,B+f fS(u)xﬁ,dxds+lf fS"(u)lﬁ@zdxds
0 Jp 0 Jp 2Jo Jp

forall t € [0, T] and a.s. in Q. This concludes the equality

fS(u(t))w(t)—S(uo)tﬁ(O)dx+f fS"(u)VuGlﬁdxds+f fS'(u)GVlﬁdxds
D 0o Jp 0 Jp

=fth'(u)1//(Ddxd,8+fth(u)wtdxds+lfffS"(u)tleI)zdxds
0 Jp 0 Jp 2Jo Jp

forall r € [0,T] and a.s. in Q. |

§3. Renormalized solution

Let us assume that there exists a strong solution u to (1.1) in the sense of Theorem 1. We
observe that for initial data uy merely in L', the 1td formula for the square of the norm (see,
e.g., [15]) can not be applied and consequently the natural a priori estimate for Vu in LP(Q X
Qr)¢ is not available. Choosing = 1 and

S(u) = f“ Ty (r)dr
0

in (2.2), where T} : R — R is the truncation function at level £ > 0 defined by

r , |l £k,
Ty(r)=1, .
ksign(r) , |r| >k,
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we find that there exists a constant C(k) > 0 depending on the truncation level k > 0, such

that ,
]Ef f VT (w)|? dxds < C(k).
o Jp

As in the deterministic case, the notion of renormalized solutions takes this information into
account.

Definition 1. Let the assumptions in the introduction be fulfilled with uy € L'(Q x D). Then
u e LY(Q;C([0, T]; LY(D))) is called a renormalized solution to (1.1) with initial value u, if
and only if

(i) Ti(u) € LP(Q; LP(0, T; W, 7 (D))) for all k > 0.

(ii) For all y € C*([0,T] x D) and all S € C*(R) such that S’ has compact support with
S’(0) = 0 or (¢, x) = 0 for all (¢, x) € [0, T] X dD the equality

f S w®)(t) — S (up)y(0)dx + f f S” W\ VulPy dxds
D 0o Jp

!
+ f f S’ ()| VulP>Vu - Vi dx ds
0 JD

! ! !
=f fS'(u)wCDdxdﬁ+f fS(u)z,b,dxds+lf fS"(u)wcbzdxds 3.1
o Jp o Jp 2Jo Jp

holds true for all # € [0, T'] and a.s. in Q.

(iii) The following energy dissipation condition holds true:

lim ]Ef |Vul? dxdt = 0.
k=oo Jir<lul<k+1)

Several remarks about Definition 1 are in order: Let u be a renormalized solution in
the sense of Definition 1. Since supp (S’) C [-M, M], it follows that S is constant outside
[-M, M] and for all k > M, S (u(t)) = S (Tx(u(?))) a.s. in Qx D for all ¢ € [0, T']. In particular,
we have

S(u) € LP(Q; LP(0, T; WHP(D))) N L¥(Q x Or).
From the chain rule for Sobolev functions it follows that
S' (V"2 Vu) = S" W e ((VulP V) = S (Ty@)(VTy @) >VTyw) — (3.2)

a.s. in Q X Qr and therefore from (i) it follows that all the terms in (3.1) are well-defined.
In general, for the renormalized solution u, Vu may not be in L”(Q x Qr)¢ and therefore (iii)
is an additional condition which can not be derived from (if). However, for u € L'(Q x Qr)
satisfying (i), we can define a generalized gradient (still denoted by Vu) by setting

Vu(w, t, x) := VTi(u(w, t, x))

a.s. in {Ju| < k} for all k > 0. From (ii) it follows that u satisfies the equation

S (u(t)) — S (u(0)) — f div (S’ (w)|VulP~2Vu) ds
0

=—fS"(u)|Vu|”ds+f@S’(u)dﬂ+lfS”(u)<D2ds, (3.3)
0 0 2 Jo
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or equivalently the SPDE
dS (u) — div (S’ (w)|VulP>Vu) dt + S (u)|Vul” dt

= @S’ (u)dB + %S”(u)(Dz dt (3.4)

in L'(D) for all ¢ € [0, T], a.s. in Q and for any S € C*(R) such that §’(0) = 0 with supp(S’)
compact.

Remark 2. Let u be a renormalized solution to (1.1) with Vu € LP(Q x Qr)?. For fixed I > 0,
let ; : R — R be defined by

0 =1+ 1
W) =41+1—r ,I<l<i+1
1 <L

Taking S (1) = fou hy(r) dr as a test function in (3.5), we may pass to the limit with / — oo and
we find that u is a strong solution to (1.1).

3.1. The It6 product rule

In the well-posedness theory of renormalized solutions in the deterministic setting (see, e.g.,
[7]), the product rule is a crucial part. In the following Lemma, we propose an It6 product rule
for strong solutions to (1.1). In the following, we will call a function f : R — R piecewise
continuous, iff it is continuous except for finitely many points.

Proposition4. For 1 < p < oo, ug, vy € L2 (Qx D) Fo-measurable let u be a strong solution to
(1.1) with initial datum uy and v be a strong solution to (1.1) with initial datum vy respectively.
Then, for any H € Ci(R) and any Z € W>*(R) with Z" piecewise continuous such that
Z0)=7'0)=0

(Z((u = v)(®)), H(u(®)))2 = (Z(uo — vo), H(u))2

+ f(; (A,,(u) - A[,(U), HWZ (u - U»W*“”(D),W(}"’(D) ds

+ j(; (Ap(w), H W) Z(u - v))W,l,p,(D),WJ‘p(D) ds+ I} (PH' (u), Z(u — v)), dB

+ 1 f f O*H" (u)Z(u — v)dx ds (3.3)
2Jo Jp

forallt€[0,T] a.s. in Q.

Proof. We fix t € [0, T]. Since u, v are strong solutions to (1.1), it follows that

u(t)=u0+pr(u)ds+f(Dd,B, 3.6)
0 0
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v(t):vo+pr(v)ds+f(I)dﬁ
0 0

and consequently
!
(u—0v)(t) = ug — vy + f Ap(w) — Ap(v)ds 3.7
0

holds in L*(D), a.s. in Q. For n € N we define I, according to Lemma 2 and set ®,, := I1,,(®),
I/tg = u(uo), Ug = 1, (o), up := I, (w), v, := I, (), g, := Hn(Ap(M))s hy = Hn(Ap(U))
Applying IT,, on both sides of (3.7) yields

!

(n — v2)(1) = ug — vy + f gn — h,ds 3.8)
0

and applying I, on both sides of (3.6) yields
! !
un(t) = uy +f gnds +f @, dB
0 0

in Wé’p(D) N L2(D) N C*(D) a.s. in Q. The pointwise Ité formula in (3.8) and (3.9) leads to

3.9)

Z(uy — va)(1) = Z(u — vp) + f (Gn = h)Z' (uy — vy) ds (3.10)
0

and

t

H(un)(t)zH(u3)+fgnH’(un)ds+f<I>,,H'(un)dﬁ+%fCD,Z,H"(un)ds (3.11)
0 0 0

in D, a.s. in Q. From (3.10), (3.11) and the product rule for It6 processes, which is just and
easy application of the two-dimensional classical It6 formula (see, e.g., [2], Proposition 8.1,
p- 218), applied pointwise in ¢ for fixed x € D it follows that
Z(uy — v) O H () (1) = Z(ugy — vg)H(up)
! !
+ [ o=z vt ds + [, )2 - 0)ds
0 0
! 1 !
+ fo O, H' (uy)Z(u, — v,) dp + 3 fo O>H" (u)Z(u, — v,) ds (3.12)

in D, a.s. in Q. Integration over D in (3.12) yields

L=hL+L+1+1s+ I (313)
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where

Iy = (Z((un = v,)(®), H((un)(1))2
I = (Z(ug — vp), H(up)):

I = f f (Gn = B2ty = v)H () dx ds
0 D

Iy = f fgnH/(un)Z(un —v,)dxds
0 JD

Is = L(QnH/(un)’Z(un —Up))2 dﬂ

1 !
Is = —f fd)iH”(u,,)Z(un —v,)dxds
2 Jo Jp

a.s. in Q. For any fixed s € [0, #] and almost every w € Q, u,(w, s) = u(w, s) and v,(w, 5) —
v(w, s) for n — oo in L*(D). Since Z, H, H' are continuous and bounded functions, it follows
that

lim 1y = (Z((u = 0)0), H' (u(®))2, (3.14)
Jim 1> = (Z(uo = vo), H' (o)) (3.15)

in L*(Q) and a.s. in Q. Note that

!
= [ = 12 = 0D H )
0

a.s. in Q and from the properties of II,, it follows that

lim g,(w, 5) — hy(w, ) = A,(u(w, 5)) — A, (v(w, 5))

in W=7"(D) for all s € [0,¢] and a.e. w € Q. Recalling the convergence result for (II,,) from
Lemma 2, there exists a constant C; > 0 not depending on s, w and n € N such that

lgn(w, 5) = hu(w, S)llw-1r (py = (A p(u(w, $)) = Ap((w, -1 ()
< GillAy(u(w, ) = Ap((w, Nllw-17 (p)-

Since the right-hand side of the above equation is in L7 (Q x (0, 1)), from Lebesgue’s domi-
nated convergence theorem it follows that

lim g, — h, = A,(u) — A, (v)
n—oo

in L” (Q x (0, 1); W~1P'(D)) and, with a similar reasoning, also in L7 (0,1; WP (D)) as. in
Q. From the chain rule for Sobolev functions it follows that

V(Z’(Mn —v)H(u,)) = Z”(I/t,, = v,)V(uy — v,)H(uy,) + Z/(I/t,, - Un)H,(un)VMn (3.16)
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a.s. in (0, 1) X Q. Moreover, there exists a constant Co = C2([1Z’]loos 12" llcos |H|los |1H ||c0) = O
such that

! !
f IV(Z' (tn = v) Hw)llp ds < Co f (IVully + IVollp) ds (3.17)
0 0

a.s. in Q. Consequently, for almost every w € Q there exists y(w) € LP(0,t; Wé”’ (D)) such
that, passing to a not relabeled subsequence that may depend on w € Q,
Z'(uy = va)H(un) = x(w) (3.18)
weakly in LP(0, t; Wé’p (D)). Since in addition,
Nim Z7(u, = v)H(un) — Z'(u ~ 0)H(u)

in LP((0,1) x D) a.s. in Q, we get
x(w) =Z"(u—-v)H(u) (3.19)
in LP(0,t, Wé’p (D)) a.s. in Q and the weak convergence in (3.18) holds for the whole se-

quence. Therefore,
Z'(uy = va)H(up) — Z'(u — v)H(u)

for n — oo weakly in LP(0, t; W(;’p (D)) for almost every w € Q. Resuming the above results
it follows that

!
lim I = f (Apt) = Ap(©), Z/ (= DYH 1y oy 45 (3.20)
0

n—oo

a.s. in Q. With analogous arguments we get

f
lim I, = f (Ap), H' GZ G = 01y iy 45 (3.21)
n—oo 0 ’

a.s. in Q. By Itd isometry,

2
E

f f DO, H' (u)Z(u, — vy) — OH (w)Z(u — v) dx d
o Jp

!
=E f f D, H () Z (1, — vy) — OH' ()Z(u — v)|* dx ds.
0 D
From the convergence
@, H' (un)Z(ty, — vy) = OH' (W)Z(u — v)

in L*(D) for n — oo a.s. in Q x (0, ¢) and since, for almost any (w, s), there exists a constant
C3 > 0 not depending on the parameters 7, s, w such that

1Pn(w, $)H' (un(w, $)Z(un(w, 5) = va(w, )l < C3[|1P(w, $)ll>
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foralln € N, a.s. in Q X (0, 1), it follows that

lim ®,H' (u,)Z(u, — v,) = OPH' (u)Z(u — v)

in L2(Q x (0, ) x D) and consequently

lim I5 = f f OH' (W) Z(u — v) dx dp (3.22)
0 D

n—oo

in L?(Q) and, passing to a subsequence if necessary, also a.s. in Q. According to the proper-
ties of (I1,,), @2 — ®? in L'((0, 1) X D) for n — oo a.s. in Q. From the boundedness and the
continuity of H” and Z we get

lim H” (u,)Z(u, — v,) = H' (W)Z(u — v)

in L2((0,¢) x D) for all 1 < g < oo and weak-* in L=((0, £) X D) a.s. in Q, thus it follows that

1 13
lim /¢ = 3 f f O*H" (u)Z(u — v)dxds (3.23)
n—oo 0 D

a.s. in Q. Passing to a subsequence if necessary, taking the limit in (3.12) for n — oo a.s. in
Q the assertion follows from (3.14)-(3.23). |

Corollary 5. Proposition 4 still holds true for H € W>®(R) such that H" is piecewise
continuous.

Proof. There exists an approximating sequence (Hs)s>o0 C Ci(R) such that ||Hs|lo < [|H|lcos
1H}lloo < 1Hlloos 1H} lloo < |IH” || for all 6 > 0 and Hs — H, H; — H’ uniformly on compact
subsets, HY — H” pointwise in R for 6 — 0. With this convergence we are able to pass to
the limit with 6 — 0 in (3.5). |
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