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Abstract. Given a vector field U(x) and a nonnegative potential V(x) on a smooth open
bounded set Q of IR", we shall discuss some regularity results for the following equation

-Aw+U-Vo+Vo=Ff in Q 0.1)

whenever 0 f is a bounded Radon measure with §(x) is the distance between x and the
boundary 0Q.

§1. Introduction

To explain the origin of our study, let us recall some recent results concerning the very weak
solution in the sense of Brezis concerning the Laplacian operator, (say U = V = 0 in the
above equation)

and when f belongs to LL(Q, O\LY(Q; 6(1 + |1n d)))) with 8(x) = dist (x, dQ), then (see [10])

w ¢ WyL(LogL) = {v € Wy (Q) : Vv € L(Log L)"},

and
f [Vw| |Log 8ldx = +co.
Q

More, we have (see [11]) the

Theorem 1. Let
W, = {y € W (@) 0 Hy(Q) : —Ay > 0

and

Ly = {f €LL(Q;6): Iy e W, st ff(X)l,b(x)dx = +Oo}.
Q

Then the unique solution u € L' *(Q) of

quso=ffso,Vgaecg(ﬁ):{¢ec2(§):¢=oonag}
Q Q
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verifies

f [Vuldx = +co0 : u ¢ WH(Q).
Q
But we know (see [1]), that

W(L(Log L))  L" (Log L™~V VB> 1,n = Ll
o

and this last set is included in the so called small Lebesgue spaces

LW 0<a< .

1
Nevertheless, we have shown in [6] that if £ is in L'(Q; 6(1 + ILogd))*), — < a <1 then the
n

unique solution u of the equation (0.1) belongs to L"9(Q) for some 6.
More precisely, we have shown in [4, 6] the following

1
Theorem 2. Let Q be a bounded open set of class C*> of R", |Q| = 1, a > — where n’ =
n

Ll’ f € L'(Q; ). Consider u € L">(Q), the v.w.s. of
n—

— f uApdx = ff(pdx Ve CHQ), ¢ =0ondQ. (1.1
Q Q

Then,
1
1. if f € LY(Q;6(1 + [Logo))?), and @ > —
n

ue L(n',mx—n+l(Q) — Gr(n/7 1;wa)’ wa(t) — t_l(l _ Log t)a/—l—ni,

and
llloror 1w, < Kolflor(austi+iLogshe) (1.2)

1
2. ifa= — then
n
u € L' (Q) and similar estimate as (1.2) holds.

In a recent paper [5], we improve the inequality (1.2) namely for the dimension 2 by

getting similar information for @ < 7 Here, we want to extend those results replacing the

Laplacian operator by a more general one as it is given in (0.1). Namely, we shall prove the

following:

Theorem 3. Let U be in LP(QY", p > n, div(U) = 0in D'(Q), U-v =00ndQ, V € L/(Q),
~1 146

V>0,8> 2"~ feL Q61 +Logdl)), B= —— "7 g=ng—n+1.

n n

Then the unique solution u € L' *(Q) of

fu[—Ago—U-Vt,o+V¢,o]dx:ffgodx Vg e ClQ) (1.3)
Q Q
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belongs to L %(Q) and there exists a constant ¢ (depending only of the data U V and Q)
such that

[l pore < cf I£16(1 + [Log [Pdx.
Q

When f is in L(Log L)®, we may obtain a similar result concerning the gradient of u but

under weaker assumptions on the operator, we will show for § > —
n

IVl o apner < Il fll LiLog Lye- 1.4

§2. Notation Primary results

For a measurable function f : Q — R, we set forz > 0
Dy (t) = measure {x eQ:|f(x)| > t}
and f, the decreasing rearrangement of |f|, for s € (0,]Q|)
fi(s) = inf{t :Ds(1) < s}, |Q] is the measure of Q,

that we shall assume to be equal to 1 for simplicity.
If A| and A, are two quantities depending on some parameters, we shall write

A < A, if there exists ¢ > 0 (independent of the parameters) such that A; < cA;

A} ~Ayifandonlyif A} S Ay and Ay S Ay

We recall also the following definition of interpolation spaces. Let (Xo, || - llo), (X1, 1l 1l1)
two Banach spaces contained continuously in a Hausdorff topological vector space (that is
(Xo, X1) is a compatible couple). For g € Xy + X, ¢ > 0 one defines the so called K functional
K(g,t; X0, X1)=K(g, t) by setting

K(g,t) = inf (llgollo + tllg1ll1)- 2.1
g=go+gi
For0 <0< 1, 1< p<+co, @ € R we shall consider

_g—1 . .
(Xo, X1)o,pia = {g € Xo + X1, llgllo,pa = Il 7(1 = Log ) K(g, Dllro,1) is ﬁmte}.

Here || - ||y denotes the norm in a Banach space V. The weighted Lebesgue space L?(0, 1; w),
0 < p < +oo is endowed with the usual norm or quasi norm, where w is a weight function
on (0, 1), L (0,1, w) = {f € LP(0, 1;w), f = 0}. Our definition of the interpolation space is
different from the usual one (see [2, 13]) since we restrict the norms on the interval (0, 1).

If we consider ordered couple, i.e. X| — X, and @ =0,

(X0, XDo,p:0 = Xo, X1)e,p
is the interpolation space as it is defined by J. Peetre (see [2, 13, 3]).

Cg Q) = {go : Q — R, twicely differentiable and vanishing at the boundary}

W'V ={p e L},(Q): Ve V'),

loc
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2.1. A few description of GI'(p, m; wy, w,)

Definition 1 (of a Generalized Gamma space with double weights). Let w;, w, be two
weights on (0, 1), m € [1,+00], 1 < p < +o00. We assume the following conditions:

cl) There exists K, > 0 such that w,(2¢) < Kjppws (1) V t € (0, 1/2). The space LP(0, 1; wy)
is continuously embedded in L' (0, 1).

!
¢2) The function f wy(o)do belongs to Ly 0, 1;wy).
0

A generalized Gamma space with double weights is the set
!
GI'(p,m;wy,w;) = {v : Q — R measurable f P (o)wy(o)do is in L» ©,1; wl)} .
0

A similar definition has been considered in [8]. They were interested in the embeddings
between GI'-spaces.

Properties. Let GI'(p, m;w;,w,) be a Generalized Gamma space with double weights and
let us define for v € GT'(p, m; wy, wy)

1 ! % %
o) = [f w () (f Uf(a')wz(O')dO') dt}
0 0

with the obvious change for m = +oo.
Then,

1. pis a quasinorm.
2. GI'(p, m; wy, w,) endowed with p is a quasi-Banach function space.
3. Ifwy, =1

GI'(p,m;wy, 1) = GI'(p, m; wy).

Example 1 (of weights). Let w;(f) = (1 — Log#)”, w»(f) = (1 — Log?) wit (y,B) € R
Then
w, satisfies condition c1) and w; and w, are in LQ}"},*W (10, 1) .

Definition 2 (of the small Lebesgue space). The small Lebesgue space associated to the
parameter p €]1, +oo[ and 6 > 0 is the set

LP(Q) = { f : Q — R measurable such that

1 0 4 1/p dt
£l = fo (1 - Logn) #"! ( fo ff((r)do-) 7<+oo}_

Let us notice that the small Lebesgue space is a G-gamma space.

Definition 3 (of the Grand Lebesgue space). The associate space of the small Lebesgue space
is denoted by LPY(Q) for 1 < p < +00, 6 > 0 and is defined as

Q) = { f+ Q = R measurable such that ||f||, , = sup (89 f Lf17 _de) s ﬁnite}.
Q

O<e<p-1
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Properties of small and Grand Lebesgue spaces.

1. They are rearrangement invariant Banach function spaces. One has the following
equivalent norm :

1
e ;L (' -&/
lilionsy = ot 1S int & ([l aa
U= z O<e<p’—1 Q

1
o e ’
lullpo ~ sup (1 —Logr) » ( f u*(s)”ds) :
t

0<1<|Q|

2. | @ + | JLrLog L)71(Q) # LP9(Q) ¢ L’ (Log L)777.

>0 p>1
c Lr c c Ly c
3. LP(Q) # Q#LMQ#( | ——(Q) # L
Log?L Q Log®L 0<Q;1
1 1
4, fu codx < |ullporollollpne, —+ — =1
Q p P
1
VMOQ) = {f e L' (@) :lim sup — If = fildx = 0}
R=0 <R x0e 7" J B(xo,NQ2
1
here f, = ——— (x)dx.
’ [B(xo; ) N Q) B(xngr)ﬁQf
§3. Proof of Theorem 3

The proof of Theorem 3 follows the same scheme as in [6] by considering the following dual
problem

Lemma 4. For any g € LT’H(Q), V € L"9(Q) and 6 > 0 the unique solution ¢ € Hé(Q) N
L>(Q) of
Ao+ U -Vo+Veo=gin H(Q) (3.1

satisfies ¢ € W?LY(Q) and there exists a constant ¢, > 0 independent of 0 such that
llellw2imo) < callgllmey-
Here, we assume the same integrability for U as in Theorem 3.

Proof. The existence, uniqueness of ¢ is given in [4]. Indeed, we have for n > 2,
1
LP9Q) c L'(Q), V0O <& < 5
Thus g € L31(Q) c H'(Q).

To obtain the W2L™¥ regularity, we may assume first V and g bounded. Then following
Proposition 11 of [4], we have ¢ € W2LP(Q), p > n.
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Let us show that, we have & > 0 and a constant ¢y > 0 depending only on the data U, V, Q
such that Ye € [0, &]
llellwzpme < collgllzrs. (3.2)

1
LetO <e< 7 Then from the equation satisfied by ¢, one has :

A@ll— < U - V @l pms + |V @llp-e + gl (3.3)
Since ¢ € L*(€2) and
llollze < callgll, 3.0 < callgllzme. B4
So that
IV el < cllVIp-ellgllzs < cllVIIzllgllzme. (3.5)
By Holder inequality, for p > n,
pn
U Vel <NUl MV @l pon < UV @llo where p(n) = ——-. (3.6)
. . . (1 n(p—n)
We shall choose gy > 0 : (n—gp)* > p(n)ie0<e< m1n<§; > ) In that case, we have
p—n

the compact embedding W2L"~%(Q) c. W!LP"™(Q). Therefore ¥ 5 > 0, there exists ey >0
such that

IV @l < ligllwzrrso + cyllgllz2. (3.7)
From Agmon-Douglis-Niremberg’s theorem and Marcienkiewicz interpolation’s theorem,
one has a constant ¢,, > 0 such that

lllwerre < callA@llpre Ve WL™(Q) N Hy(Q) and ¥ & € [0, &]. (3.8)

Combining relations (3.3) to (3.8), we deduce for all > 0, one has a constant ¢, > 0, for all
€ €0, &0l

lgllwzrr-e < U ll@llwern-s + cyllUNllellies + CNIVIE-liglizne + gl (3.9)

Since we have

1
llgllzme = sup (€9f|9|"8(x)dx) ;
O<e<i5t Q

we deduce from relation (3.9) :
lellwzzoe(1 = llUILr) < cyllUNrllgllzne + (1 + [[VIizoo)llgllzos.
Choosing 7l|U||z» < % we then have a constant ¢ depending only on U and Q.
llellwarne < c(1 +1IVIigwo)llglizme. (3.10)
We conclude by usual density argument, say
replacing g by gi(x) = min (k; |g(x)|)sign (g(x)), Vi = min(V; k).

“App + U -V + Vg = gk
¢ € Hy(Q) N LV(Q)
Let kK — oo, the uniqueness of solution (1.3) gives the result. O

the solution of ¢y of satisfies (3.10).
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§4. Regularity for data in L(Log L)* for a full linear operator

In [6], we have shown the following

Theorem 5. Let Q be a bounded open set of R",n > 3 of class C"', A(x) = (@ij(x))ij, x € Q

a bounded coercitive matrix. Assume that a;; € VMO(Q) and let f be in L(Log L)*, a >
-1
1 . Then, the weak solution of

div(A(xX)Vu) = f in Q
ue WiL"(Q)

satisfies
IVl o ma-ner < c(; || fllzog ye- 4.1)

We want to extend the above result replacing the main operator by
Lu= —div (A(x)Vu) + B(x) - Vu — div (C(x)u) + V(x)u.

For this, we will assume that

Hl. C(x) = (ci(x))ief1...n;» B(x) = (bi(x)) are such that ¢;, b; are in L"(Q) for all i and
V € L1(Q), A is symmetric.

H2. There exists a constant ¢y > 0: V — div (C) > ¢o > 01in D'(Q)
We recall the following results (see [9]).
Lemma 6. Under the above assumptions on A, B, C and V, F € LP(Q)", 1 < p < n. There
exists an unique solution u € Wé’p Q) of
Lu = —div(F) in D'(Q).

Moreover, there exists a constant k(p) > 0 (independent of f and u) such that

IVull 2z o) < KPIIF @y (4.2)

Lemma 7 (see [7]). Let 1 < p < n, f € LP(Q) and v the unique solution of —Av = f in
D(Q),ve Wé’p (Q). Then there exist a constant c, independent of p, f and v such that

Cn
IVoll, 2z, ) < (Tllfllum)- 4.3)

-1
Lemma 8. Let f € LP(Q), 1<p<M, pr= pn .
n?2-n-1 n—p

Then, there exist a constant c,, independent of p, f such that the unique solution u € Wé’p Q)
of Lu = f in D'(Q) satisfies

’

Cn
IVull < WHJCHLP(Q)- (4.4)
p b n
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-1 1
Proof. Letr € |—— =n'’,"— = (n=1y| and v € Wy"(Q) : ~Av € L"(Q) with - =

— + —. From Lemma 6 for any solution u € Wé’"l (Q) of Lu = —Av, one has
ron

Vel @ < kOO)IVolle - 4.5)
and
IVall -1 ) < K1 = 1)Vl o1 - (4.6)
Applying the Marcinkiewicz real interpolation method, we deduce that we have
IVullLr @) < Max (k(n'); k(n = D)IIVollLr@.- 4.7
nn-1)

Taking 1< p < 2—1
n*—n-—
LP(Q), v e WHP(Q) then applying Lemma 7, relation (4.7) leads to :

, we have n’ < p* < (n— 1) and choosing v such that —Av = f €

c
IVl ) < #”f”mm. mi

-1
Theorem 9. Let f € L(Log L)*, a >

Then
1. |Vu| € LWna-n+l(().

2. “V’/l“L(n’.mkwl(Q) < C(n; a)”f”L(LOgL)"-

, u satisfying Lu = f in D/(Q), u € WiL" ().
n

Proof. Its follows the same arguments as in [6] using relation (4.4) and a suitable decompo-
sition of f, whenever f > 0. We drop the details. O

We may weaken hypothesis H2. on V and C(x) by assuming

H3. V-div(C) > 0in D'(Q).
But we shall add an assumption as

1
H4. V=~ 2div(C+B) > 0in D(Q).

Hypothesis H4. ensures that for all T € H~!(Q) the problem Lu = T in D'(Q) (resp.
L*u = T) possesses an unique solution u € H(‘)(Q), L7 is the adjoint operator of £. As a
by product of such result and Lemma 6 one has :

2 2
" ,—n ,n >3, F e L(Q). Then, there exists an unique
n+2 n-2

u € Wy"(Q) of Lu = —div (F) in D/ (Q). Moreover,

Lemma 10. Let r € [

de(r) > 0 ||Vullpr < c(OIIF|zr- 4.8)

2
Proof. Let F € L'(Q)", r € [2, _nz] Since F € L*(Q)", we may use hypothesis H4. to

deduce that the problem Lu = —div (F) has an unique solution u € Hy(Q). Let Fy € L* (Q)"
such —div (Fy) = u and

IFollz> < cllullzz < cllFllzz < cllFll (4.9)
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We may write the equation Lu = —div (F) as
—div (A(x)Vu) + B(x)Vu — div (C(x)u) + (V + Du = =div(Fo + F), Fo+ F e L'(Q)"

Onehas V+1—-div(C)>1>0.
Applying Lemma 6, we deduce that u € W(;’r(Q) and

IVuller < c(MIIFo + Fller < c(OIIF| (4.10)

2
For r € [%,Z], we argue by duality to conclude that one has an unique function u €
n
W, (Q) such that Lu = —div (F) in D'(Q)
IVullr < cOIFll-. O (4.11)

Thank to the above Lemma, we have:

Lemma 11. Let r € [n’,(n — 1)’] then there exists a constant k(n) > 0
IVullLr < k(|FI|Lr

whenever u satisfies: Lu = —div (F) in D' (Q).
We conclude as before to derive the following:
-1
Lemma 12. Let f € LP(Q), 1 < p < %, p* = pr o _ —p(n). Then the unique
n*-n-1 n—-p
solutionu of Lu = f, u € Wé‘p(Q) satisfies

Cil
IVullp < (—L_,Hf”U(Q)-
p — n

-1
Theorem 13. Assume HI. H3. and H4. Then for f € L(LogL)*, a > 1 , n > 3. There

exists an unique solution u € L™ (Q) satisfying Lu = f in D' (Q). Moreover, there
exists a constant c(n; @) > 0 such that:

IVull o na-nii () < (3 NI fllLiLog Ly
Proof. The proof follows the same argument as in [6]. O

Recent developments concerning equation (2.1) but with singular potential as Colomb’s
potential is given in [12].
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