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Abstract. In this article, we consider some generalizations of polynomial and
exponential B-splines. Firstly, the extension from integral to complex orders
is reviewed and presented. The second generalization involves the construction
of uncountable families of self-referential or fractal functions from polynomial
and exponential B-splines of integral and complex orders. As the support of the
latter B-splines is the set [0,∞), the known fractal interpolation techniques are
extended in order to include this setting.
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§1. Introduction

Schoenberg’s polynomial B-splines [25] are a powerful tool in approximation the-
ory because of their favorable analytic and computational properties. Unfortunately,
polynomial B-splines also have some disadvantages. Amongst them, we list:

• Polynomial B-splines have only integer smoothness which is linked to the integer
order n. However, for approximation-theoretic purposes, it is useful to fill in the
gaps in the smoothness spectrum Cn, n ∈ N. There are many functions that are
elements of, for instance, Hölder spaces Cn,α, 0 ≤ α < 1.

• Polynomial B-splines do not contain phase information. The importance of
approximation functions to be able to provide phase information is exemplified
by the so-called Oppenheim-Lim Experiment [23]. In their paper, Oppenheim &
Lim showed that the Fourier reconstruction of an image using only the modulus
of the complex-valued Fourier coefficients results in less informative content
than a reconstruction from the phase of the Fourier coefficients (and setting the
modulus equal to 1). The reconstruction from phase showed singularities such
as corners and edges quite clearly but they were hard to see in the reconstruction
from the modulus.
In addition, there are sometimes requirements for a single-band frequency ana-
lysis. For some applications, e.g., for phase retrieval tasks, complex-valued
analysis bases are needed since real-valued bases can only provide a symmetric
spectrum.

• Polynomial splines are ill-suited for describing functions or data that exhibit
sudden growth or decay because of their oscillatory behavior near the points
where such an increase or decrease occurs [28].
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The first two items in the above list can be resolved by extending the order of
B-splines from integral n to complex z with Re z > 1. The thus obtained so-called
complex B-splines [7] generate a two-parameter family of functions with a continuous
smoothness spectrum and built-in phase information.

The third issue can be rectified by introducing exponential splines and B-splines.
These splines are employed to model phenomena that follow differential systems of
the form ẋ = Ax, where A is a constant matrix. For such equations the solutions are
linear combinations of functions of the type eax and xneax, a ∈ R. Like polynomial
B-splines, exponential B-splines can be defined as finite convolution products of ex-
ponential functions. See [1, 5, 19, 24, 27, 30, 31] for an incomplete list of references
for exponential splines. The extension of exponential B-splines to complex order [14]
adds the option of applying them for the retrieval of phase information.

Neither the original nor extended polynomial and exponential B-splines are ap-
propriate approximants when functions exhibit complex intrinsic characteristics such
as self-referential or fractal behavior. In these cases, one needs to resort to frac-
tal interpolation and approximation techniques to describe them. The extension of
polynomial B-splines to an uncountable family of self-referential or fractal functions
indexed by a finite tuple of real numbers αi ∈ (−1, 1) was presented in, i.e., [12, 13, 22].
Here we consider the case of exponential B-splines of integral order and also the frac-
tal generalization of polynomial and exponential B-splines of complex orders. The
latter requires extending fractal interpolation techniques to unbounded domains.

The structure of this article is as follows. For the sake of presentation and com-
pleteness, we briefly introduce polynomial and exponential B-splines and their com-
plex order extensions in Sections 2, respectively, 3. A brief introduction to self-
referential functions is provided in Section 4.1 and in the final Section 4 uncountably
many families of self-referential polynomial and exponential B-splines of complex or-
ders are constructed.

§2. Polynomial B-Splines

In this section, we briefly review polynomial splines and their basis functions, poly-
nomial B-splines. The interested reader may consult the large literature on splines
for more details and further results.

To this end, let X = {a = x0 < x1 < · · · < xk < xk+1 = b} be a set of points, called
knots, supported on the real line R.

Definition 1. A spline of order n on [a, b] with knot set X is a function s : [a, b]→ R
such that

(i) On each subinterval [xi−1, xi), s is a polynomial of order at most n (degree at
most n − 1);

(ii) s ∈ Cn−2[a, b].

s is called a cardinal spline if the knot set is a contiguous subset of Z.

The set SX,n of all spline functions s of order n over a knot set X forms an R-
vector space of dimension n + k. A convenient and powerful basis of SX,n is given
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Figure 1: Some graphs of polynomial B-splines: n = 1, 2, 3, 4.

by Schoenberg’s cardinal polynomial B-Splines [25]. They are recursively defined as
follows. Denote by χ the characteristic function on [0, 1] and set

B1(x) := χ(x),

Bn(x) := (Bn−1 ∗ B1)(x) =

∫ 1

0
Bn−1(x − t)dt, 2 ≤ n ∈ N, (2.1)

where ∗ denotes the convolution between functions. An immediate consequence of
this definition is that supp Bn = [0, n] and that Bn ∈ Cn−2, n ∈ N, with C−1 denoting the
family of piecewise continuous functions. Some graphs of these cardinal polynomial
B-splines are shown in Figure 1.

Taking the Fourier transform of (2.1) yields the Fourier representation of Bn, which
is sometimes used to define the B-splines.

B̂n(ω) := F (Bn)(ω) :=
∫
R

Bn(x)e−iωxdx =

(
1 − e−iω

iω

)n

. (2.2)

It can be shown, either using (2.1) or (2.2) that the n-order B-spline has an explicit
representation in the form

Bn(x) =
1

Γ(n)

∞∑
k=0

(−1)k
(
n
k

)
(x − k)n−1

+ , (2.3)

where x+ := max{0, x}.
The collection {Bn : n ∈ N} is thus a discrete family of functions with increasing

smoothness and support. Both the support and the smoothness are tied to the integral
order n.

The next result justifies the term B-spline with B standing for basis. For a proof,
see for instance [6].
Proposition 1. Every cardinal spline function s : [a, b] → of order n has a unique
representation in terms of a finite shifted sequence of cardinal B-splines of order n:

s(x) =

k∑
j=−n+1

c jBn(x − j),

where c j ∈ R.
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Hence, investigating properties of splines reduces to those of B-splines.

Terminology. As we are dealing exclusively with cardinal splines and B-splines in
the remainder of this paper, we will drop the adjective “cardinal.”

2.1. Some properties of polynomial B-splines
The polynomial B-splines enjoy among others the following properties.

(i) Recursion Relation:

∀n ∈ N ∀x ∈ R : Bn(x) =
x

n − 1
Bn−1(x) +

n − x
n − 1

Bn−1(x − 1)

(ii) Convolution Relation:

∀m, n ∈ N : Bm ∗ Bn = Bm+n

(iii) Convergence to Gaussians: As n → ∞, Bn converges in Lp-norm, 2 ≤ p ≤ ∞, to
a modulated Gaussian.

(iv) The Error of Approximation for an f ∈ Cn[a, b] on a uniform grid of mesh size
h by polynomial B-splines of order n is O(hn).

The interested reader may consult the extensive literature on B-splines to learn about
additional properties of this important family of functions in approximation theory.

2.2. Polynomial B-splines of complex orders
Both the first and second obstacle of polynomial B-splines mentioned in the intro-
duction can be overcome by extending them to include complex orders (or complex
degrees). This can be done in the Fourier domain as follows. (Cf. [7].)

Definition 2. Suppose z ∈ C with Re z > 1. The B-spline of complex order z, for
short complex B-spline, is given by B̂ : R→ C,

B̂z(ω) :=
(

1 − e−iω

iω

)z

, (2.4)

or more precisely,

B̂z(ω) = B̂Re z(ω)︸   ︷︷   ︸
continuous smoothness

ei Im z ln Ω(ω)︸      ︷︷      ︸
phase

e− Im z arg Ω(ω)︸        ︷︷        ︸
modulation

, (2.5)

where Ω(ω) := 1−e−iω

iω .

We remark that B̂z is well-defined as graph Ω does not intersect the real negative axis.
The first factor in the product appearing in (2.5) is the Fourier transform of a so-

called fractional B-spline [29]. Some graphs of such B-splines of real order are depicted
in Figure 2. The second and third factors in (2.5) are a modulating and a damping
factor. The presence of the imaginary part Im z causes the frequency components on
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Figure 2: A family of B-splines of real order for α = Re z = 0.6 + m · 0.2, m = 1, . . . , 17.

the negative and positive real axis to be enhanced with different signs. This has the
effect of shifting the frequency spectrum towards the negative or positive frequency
side, depending on the sign of Im z. The corresponding bases can be interpreted as
approximate single-band filters [7].

The time domain representation of a complex B-spline was derived in [7] and is
given in the next theorem.

Theorem 2 (Time domain representation).

Bz(x) =
1

Γ(z)

∞∑
k=0

(−1)k
(
z
k

)
(x − k)z−1

+ , Re z > 1. (2.6)

Equality holds point-wise for all x ∈ R and in the L2(R)–norm.

Complex B-splines enjoy among others the following properties.

1. Bz ∈ L1(R) ∩ L2(R), Re z > 1.

2.
∫
R

Bz(x)dx = B̂z(0) = 1.

3. Bz ∈ W p,2(R) for p < Re z − 1
2 .

4. Bz(x) = O(|x|−m), for m < Re z + 1 and |x| → ∞.

5. Bz converges in Lp-norm, 2 ≤ p ≤ ∞, to a modulated and shifted Gaussian as
Re z→ ∞.

6. BRe z reproduces polynomials up to order dRe ze.

7. For Re z > 1, BRe z is (Re z − 1)-Hölder continuous.

8. {Bz(· − k)}k∈Z is a Riesz sequence in L2(R). This allows the construction of spline
scaling functions and spline wavelets of complex order.

Some graphical examples of complex polynomial B-splines are shown in Figure 3.
In summary, complex B-splines are a continuous two-parameter family of functions

which enjoy the properties:

(a) Re z > 1 gives a continuous family of functions of increasing smoothness Re z;

(b) Im z contains phase information and can be used to describe and resolve singu-
larities in signals and images.
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Figure 3: Bz for z = (3 + k
4 ) + i, k = 0, 1, . . . , 4.

§3. Exponential B-Splines

Exponential B-splines can be used to interpolate or approximate data that exhibit
sudden growth or decay and for which polynomial B-splines are not well-suited be-
cause of their oscillatory behavior near the points where the sudden growth or decay
occurs [28]. The interested reader is referred to the following albeit incomplete list of
references on exponential B-splines [5, 19, 27, 30, 31].

To define the class of exponential B-splines, let N ∈ N and let a := (a1, . . . , aN),
where a1, . . . , aN ∈ R with ai , 0 for at least one i ∈ NN .

Definition 3. An exponential B-spline EN,a : R → R of order N for the N-tuple a is
a function of the form

EN := EN,a :=
N
∗

k=1
eak(·)χ.

To simplify notation, we set εa(·) := ea(·)χ. A closed formula for En was derived in
[4]. Note that supp EN = [0,N], N ∈ N.

For any a ∈ R, the Fourier transform of ε−a(·) is given by

F (ε−a(·))(ω) =
1 − e−ae−iω

iω + a
.

and, therefore,

F (En)(ω) =

n∏
k=1

1 − e−ak e−iω

iω + ak

ak=a
=

(
1 − e−ae−iω

iω + a

)n

. (3.1)

3.1. Exponential B-splines of complex order
Let z ∈ C>1 := {ζ ∈ C : Re ζ > 1} and a > 0. Taking the left-hand-side of (3.1) as a
starting point, we define an exponential B-spline of complex order z, for short complex
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Figure 4: Ez,a for z = (3 + k
4 ) + 3i, k = 0, 1, . . . , 4 and a = 1.7. Top right: Re Ez,a, top

left: Im Ez,a, bottom: Three-dimensional rendering of Ez,a.

exponential B-spline, by (see [14])

Êz,a(ω) :=
(

1 − e−(a+iω)

a + iω

)z

= ÊRe z,a(ω) ei Ωa(ω) Im z e− arg Ωa(ω) Im z, (3.2)

where Ωa(ω) := 1−e−(a+iω)

a+iω . An investigation of the function Ωa : R → C shows that Êz,a

is well-defined only if a > 0. (See [14].) The second and third terms in the product of
(3.2) play the same role as they did in the case of complex polynomial B-splines.

Using properties of the exponential difference operator and the definition of Ez,a,
the following time domain representation of Ez,a was proved in [14].

Theorem 3. Suppose z ∈ C>1 and a > 0. Then,

Ez,a(x) =
1

Γ(z)

∞∑
k=0

(−1)k
(
z
k

)
e−kae−a(x−k)

+ (x − k)z−1
+ ,

where e(·)
+ := χ[0,∞) e(·). The sum converges both point-wise in R and in the L2–sense.

Figure 4 depicts some graphs of exponential B-splines of complex order.
Remark 1. Complex polynomial and exponential B-splines of order z ∈ C>1 are two-
parameter families of functions assigning to each point x ∈ [0,∞) both a real value
and a single direction given by Im z. For several applications however, such as geo-
physical data processing or multichannel data, more than one independent direction
is required. For this purpose, the complex order is replaced by a quaternionic or more
generally a hypercomplex order. We refer the interested reader to [8, 9, 17] for these
extensions in the case of polynomial B-splines.
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§4. Self-Referential Polynomial and Exponential B-Splines

In this section, we consider some fractal extensions of the classical as well as the
complex polynomial and exponential B-splines.

4.1. Self-Referential Functions
First, we briefly review the concept of self-referential function. For more details and
proofs we refer the interested reader to, for instance, [2, 3, 10, 13, 18, 20] or any other
of the numerous publications in fractal interpolation theory.

In the following, the symbol NN := {1, . . . ,N} denotes the initial segment of length
N of N. Further, we assume that N ≥ 2.

Let I be a nonempty interval in R and suppose that {Ln : I → I : n ∈ NN} is a
family of bijections with the property that {Ln(I) : n ∈ NN} forms a partition of I, i.e.,

I =

N⋃
n=1

Ln(I), and Ln(I) ∩ Lm(I) = ∅, ∀n , m ∈ NN . (4.1)

Remark 2. Condition (4.1) cannot be relaxed without adding compatibility conditions
to guarantee the form (4.2) of the RB operator T . For more details, we refer the
interested reader to [26].

Denote by B(I) := B(I,R) the set

B(I) := { f : I → R : f bounded}.

(B(I), d) becomes a complete metric space when endowed with the metric

d( f , g) := sup
x∈I
| f (x) − g(x)|,

where | · | denotes the Euclidean norm on R.
Let f , b ∈ B(I) be arbitrary. Consider the Read-Bajraktarevíc (RB) operator

T : B(I)→ B(I) defined on each subinterval Ln(I) by

Tg = f + αn · (g − b) ◦ L−1
n , n ∈ NN , (4.2)

with αn ∈ R. Under the assumption that α := max{|αn| : n ∈ NN} < 1, it follows from
the Banach fixed point theorem that T has a unique fixed point f ∗ ∈ B(I). This fixed
point satisfies the self-referential equation

f ∗ = f + αn · ( f ∗ − b) ◦ L−1
n , on Ln(I), n ∈ NN . (4.3)

Any function in B(I) which satisfies an equation of the form (4.3) is termed a self-
referential function of type B(I). The functions f and b are called seed function,
respectively, base function.

Note that f ∗ can be iteratively obtained as the limit of the sequence {gk} defined
by

gk := Tgk−1 = f + αn · (gk−1 − b) ◦ L−1
n , on Ln(I), k ∈ N, (4.4)

for an arbitrary g0 ∈ B(I).
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Remark 3. The fixed point f ∗ of an RB operator has the property that graph f ∗ is
made up of a finite number of copies of itself and is therefore, in general, a fractal set.
For this reason, f ∗ is also called a fractal function [2, 10, 18].
Remark 4. Self-referential functions defined on function spaces other than B(I) can
be constructed as well. Examples include, among others, the smoothness spaces
Cr(I), the Lebesgue spaces Lp(I), and the Besov spaces Bs

p,q(I). (Cf., for instance,
[3, 11, 15, 16, 18].) To ensure that the RB operator T maps a function space into
itself, additional conditions at the points {Ln(∂I)}, n ∈ NN , may have to be imposed.
Remark 5. For a given finite set of bijections {Ln} or, equivalently, a given partition
of I yielding a finite set of bijections, the fixed point f ∗ depends on the functions f
and b as well as the vertical scaling factors {αn}. The interested reader may want to
consult [21] in the former case.
Remark 6. For a varying N-tuple α := (α1, . . . , αN), the fixed point f ∗ actually defines
an uncountable family f α of self-referential functions indexed by α ∈ (−1, 1)N . Such
sets of self-referential functions were termed α-fractal functions and considered as the
image of an operator F α, f 7→ f α. (Cf., i.e., [20].)

4.2. Polynomial and exponential splines of integral order
For this purpose, let BN be the cardinal polynomial B-spline of order N ≥ 2 as in
(2.3). Let I := supp BN = [0,N] and define bijections Ln : I → I, n ∈ NN , by

Ln(I) :=

[n − 1, n), n ∈ NN−1;
[N − 1,N], n = N.

Now choose f := BN and b ≡ 0. The case where b is null is considered in [21]. Suppose
α := max{|αn| : n ∈ NN} < 1. Then the RB operator T reads

Tg = BN + αn · g ◦ L−1
n , on Ln(I), n ∈ NN ,

for any g ∈ B(I). As BN ∈ CN−2, we additionally require g ∈ CN−2(I) and impose the
join-up conditions

∀m ∈ NN−1 : (Tg)(ν)(m−) = (Tg)(ν)(m+), ν = 0, 1, . . . ,N − 2. (4.5)

Conditions (4.5) guarantee that Tg ∈ CN−2(I) and as CN−2(I) becomes a Banach space

under the norm
N−2∑
ν=0
‖(·)(ν)‖∞, the unique fixed point BN of T is an element of CN−2(I)

and a self-referential function:

BN = BN + αn ·BN ◦ L−1
n , on Ln(I), n ∈ NN . (4.6)

As the fixed pointBN depends continuously on the set of parameters α := (α1, . . . , αN) ∈
(−1, 1)N , we also write BN(α) should the need arise. Hence, (4.6) defines an uncount-
able family of functions parametrized by α. Clearly, α = 0 reproduces the seed
function BN . (See also [22].)
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Figure 5: A linear (left) and a quadratic (right) fractal polynomial B-spline.

Figure 5 depicts two such fractal polynomial B-splines: the linear B2(( 3
4 ,

3
4 )) and

the quadratic B3(( 1
4 ,

1
4 ,

1
4 )). Note that B3(( 1

4 ,
1
4 ,

1
4 )) is differentiable on [0, 3] and its

graph is made up of three copies of itself.
In a similar fashion, we can take I := [0,N], f := EN,a, and set again b ≡ 0

to generate an uncountable family of fractal analogues of the classical exponential
B-splines EN,a. The RB operator then reads

Tg = EN,a + αn · g ◦ L−1
n , on Ln(I), n ∈ NN ,

for any g ∈ C(I) (as the functions EN,a are continuous on I). As above, we choose
α ∈ (−1, 1)N and impose the continuity conditions

Tg(m−) = Tg(m+), m ∈ NN−1.

Under these conditions, T is well-defined and contractive from C(I) into itself. Its
unique fixed point EN,a := EN,a(α) satisfies the self-referential equation

EN,a = EN,a + αn · EN,a ◦ L−1
n , on Ln(I), n ∈ NN . (4.7)

In Figures 6 and 7, two fractal exponential B-splines are depicted.

4.3. Polynomial and exponential B-splines of complex order
In order to derive the fractal extensions of polynomial and exponential B-splines of
complex order, we need to take into account the fact that the support of Bz and Ez,a is
the unbounded interval I := [0,∞) and extend the above construction to this setting.

To be specific, suppose that the bijections Ln, n ∈ NN , are such that Ln(I), n ∈ NN−1,
is bounded on R and LN(I) unbounded. As before, we require that Eqn. (4.1) holds.
We note that this set-up is an important special case of a general approach investigated
in [16].

To this end, we introduce the Banach space (C0,0(R+
0 ), ‖ · ‖∞) given by

C0,0(R+
0 ) := C0,0(R+

0 ,R) :=
{

f ∈ C(R+
0 ,R) : f (0) = 0 ∧ lim

x→∞
f (x) = 0

}
.

As Bz and Ez,a are continuous functions of the time variable x, vanish at x = 0, and
satisfy lim

x→∞
Bz(x) = 0 = lim

x→∞
Ez,a(x), we need to impose conditions on the RB operator

T in Eqn. (4.2) to map C0,0(R+
0 ) into itself.
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These conditions read as follows. For n ∈ NN−1, denote

Ln(0) =: xn−1,

Ln(∞) =: xn,
(4.8)

and for n := N:
LN(0) =: xN−1,

LN(∞) = ∞.
(4.9)

Here, we used the shorthand notation f (∞) := lim
x→∞

f (x) for a function f .
As a base function, we choose again b ≡ 0 on [0,∞) and require that, for n ∈ NN−1,

Tg(xn−) = Tg(xn+) (4.10)

or, equivalently,
Tg(Ln(∞)) = Tg(Ln+1(0)), (4.11)

with the obvious modification for n = N.
Theorem 4. Suppose bijections Ln : R+

0 → R
+
0 are chosen such that {Ln(R+

0 )}n∈NN forms
a partition of [0,∞) subject to (4.8) and (4.9). Further suppose that T : C0,0(R+

0 ) →
C0,0(R+

0 ) is given by
Tg = f + αn · g ◦ L−1

n , (4.12)

and satisfies (4.10), where f ∈ C0,0(R+
0 ) is arbitrary and α := max{|αn| : n ∈ NN} < 1.

Then T is well-defined and contractive on (C0,0(R+
0 ), ‖ · ‖∞) with Lipschitz constant α.

Proof. The conditions on the bijections {Ln} and the join-up conditions (4.10) guar-
antee that T is well-defined and maps C0,0(R+

0 ) into itself. To establish that T is
contractive on (C0,0(R+

0 ), ‖ · ‖∞) with Lipschitz constant α is straightforward. �

The unique fixed point f ∗ ∈ C0,0(R+
0 ) of T as defined in Eqn. (4.12) is called a

self-referential function of class C0,0(R+
0 ).
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Remark 7. Note that Theorem 4 also holds for the Banach spaces (C0,0(R+
0 ,C), ‖ · ‖∞).

As noted above, for varying α = (α1, . . . , αN) subject to α := max{|αn| : n ∈ NN} <
1, f ∗ actually defines an uncountably infinite family f α of self-referential functions
containing the seed function f .

As two prominent examples of how to obtain the fractal extension of functions
in C0,0(R+

0 ), we consider f = Bz and f = Ez,a. For this purpose and the sake of
presentation, we choose N := 2 and define bijections Ln : R+

0 → R
+
0 by

L1(x) := 2 π−1 arctan x and L2(x) := x + 1.

Then [0,∞) = L1([0,∞)) ∪ L2([0,∞)) = [0, 1) ∪ [1,∞).
Now select f := Bz, respectively, f = Ez,a, choose αn ∈ (−1, 1), n = 1, 2, and define

RB operators
T1g := Bz + α1 g ◦ tan ( πx

2 )
∣∣∣
[0,1) + α2 g(x − 1)

∣∣∣
[1,∞).

and
T2g := Ez,a + α1 g ◦ tan ( πx

2 )
∣∣∣
[0,1) + α2 g(x − 1)

∣∣∣
[1,∞).

By Theorem 4 and Remark 7, we obtain the fractal extensions of Bz and Ez,a as the
fixed points Bz(α), respectively, Ez,a(α) of the RB operators T1 and T2:

Bz = Bz + α1Bz ◦ tan ( πx
2 )

∣∣∣
[0,1) + α2Bz(x − 1)

∣∣∣
[1,∞).

and
Ez,a = Ea

z + α1 Ez,a ◦ tan ( πx
2 )

∣∣∣
[0,1) + α2 Ez,a(x − 1)

∣∣∣
[1,∞).

In Figures 8 and 9, the graphs of Bπ+i( 3
4 ,−

1
2 ) and E√2+i,1( 3

4 ,−
1
2 ) are displayed.
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Figure 9: Top right: ReE√2+i,1( 3
4 ,−

1
2 ), top left: ImE√2+i,1( 3

4 ,−
1
2 ), bottom: Three-

dimensional rendering of E√2+i,1( 3
4 ,−

1
2 ). The length unit on the x-axis for the graphs

on top is 1
100 .

Remark 8. The families of self-referential functions supported on the interval I =

[0,∞) not only depend on α but also on the partition induced by the bijections Ln on
I. Denoting the collection of all such partitions by Π = ΠN , the set of fixed points f α

should more precisely be written as f α
Π
and regarded as a function (−1, 1)N ×Π→ f ∗.
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