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PERIODIC SOLUTIONS IN THE
HÉNON-HEILES ROTATING SYSTEM
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Abstract. We consider a generalized Hénon-Heiles system in a rotating frame. Our aim
is to prove the existence of periodic orbits in a neighborhood of the origin for appropri-
ate values of the rotating frequency. To this end, we use classical averaging theory to
demonstrate that the number of periodic orbits is in correspondence with the equilibrium
solutions of the original system, with the same type of stability.
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§1. Introduction

Equilibrium points and periodic orbits of dynamical systems are of special interest to under-
stand its dynamics. They organize the phase structure and, some times, the appearance of
heteroclitic connections allows migration of orbits giving rise to a kind of transport phenom-
ena. For instance, this is what happens in Celestial Mechanics in the framework of the three
body problem [6, 10], but also in the context of galactic dynamics, where the existence of
heteroclitic connections are proposed as a way to explain the formation of spiral arms [12].
The model considered in [12] is based on a logarithmic potential. However, many galactic
models consider cubic or quartic polynomial potentials [3]. This is the case of the well known
Hénon-Heiles system, used to describe stellar orbits under the action of the galaxy’s core [7].
Although this model has been considered as a paradigmatic system to study chaos and other
properties of planar dynamical systems in many different fields, it does not take into account
the effect of a rotating framework. In this way, de Zeeuw & Merritt [5] consider the cubic
potential of the Hénon-Heiles system for a rotating galaxy and other authors consider a sim-
ilar model in the context of atomic physics [2, 9]. The presence of the rotating frequency
makes the system more interesting, from a dynamics point of view, with the appearance of
Lagrangian type equilibrium points. In [8], a detailed analysis of the stability of these points
is performed. One of the remarkable facts of this system is the existence of a critical value of
the rotating frequency in such a way that the nature of the critical points, as critical points of
the effective potential, reverses. This is an interesting situation that deserves more insight. In
particular, the existence of periodic orbits is the next step in understanding the dynamic of the
system. To prove the existence of periodic orbits, we will use the classical averaging theory
[13] used successfully to find periodic orbits in many different dynamical systems [1, 4, 11].
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§2. The system

Let us consider the Hamiltonian system defined by

H =
1
2

(X2 + Y2) − ω(xY − yX) +
1
2

(x2 + y2) + ayx2 + by3, (1)

which can be viewed as a generalized Hénon-Heiles system in a rotating reference frame
with angular velocity ω, where we assume, without loss of generality, a > 0 and ω > 0. The
equations of the motion are given by

ẋ =
∂H

∂X
= X + ωy, Ẋ = −

∂H

∂x
= −x + ωY − 2axy,

ẏ =
∂H

∂Y
= Y − ωx, Ẏ = −

∂H

∂y
= −y − ωX − ax2 − 3by2.

(2)

It is clear that the origin is always an equilibrium point. Moreover, three more equilibrium
points can appear, depending on the values of the parameters a and b. An interesting fact is
that if

E0 ≡ (x0, y0, X0,Y0)

is an equilibrium point for ω = ω0, then

Ê0 ≡ (−x0/ω
2
0,−y0/ω

2
0,−X0/ω

4
0,−Y0/ω

4
0)

is also a critical point for ω = 1/ω0. In this way, there is a correspondence between the cases
0 < ω < 1 and ω > 1. However, there is a slight difference. Indeed, equilibrium points are
related to the critical points of the effective potential

Φeff = H −
1
2

(ẋ2 + ẏ2) =
1
2

(x2(2ay − ω2 + 1) + y2(2by − ω2 + 1)), (3)

in such a way that if E0 is an equilibrium point of the system (1), then (x0, y0) is a critical
point of the effective potential Φeff . In this way, if E0 is a minimum (maximum) of the
effective potential, then Ê0 is a maximum (minimum) of Φeff . In the case E0 is a saddle point,
the same happens for Ê0. As a consequence, linear stability properties cannot be extended
directly from the case 0 < ω < 1 to the case ω > 1 if the corresponding critical point is a
minimum (maximum). While a minimum of Φeff is always a linear stable equilibrium, the
same cannot be said for a maximum. Nevertheless, if the critical point is the origin, then it is
always a linear stable equilibrium, it does not matter a minimum or a maximum. Indeed, the
associated eigenvalues are

λ1,2 = ±i(ω − 1), λ3,4 = ±i(ω + 1). (4)

For a detailed study of equilibrium points and their stability properties the reader is referred
to [8].

It is worth noting that in the transition case, ω = 1, the origin loses its elliptic charac-
ter, as two zero eigenvalues appear, precisely those coming from ±i(ω − 1). Moreover, the
origin is the unique equilibrium point of the system and a bifurcation occurs when all the
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equilibria come into coincidence. Thus, what happens in the vicinity of the origin as ω → 1
deserves some analysis. In particular, we focus on the existence of periodic orbits and their
bifurcations, assuming that ab , 0, in order to avoid degenerate situations, when non iso-
lated equilibria appear. To begin with, we observe that, being the origin an elliptic point with
associated eigenvalues given by (4), the Hamiltonian function can be transformed into an
equivalent one made of two coupled harmonic oscillators with frequencies 1 − ω and 1 + ω.
To this end, we transform the system by means of the canonical change of variables

x = −
x1
√

2
+

x2
√

2
, X = −

X1
√

2
+

X2
√

2
,

y =
X1
√

2
+

X2
√

2
, Y = −

x1
√

2
−

x2
√

2
.

(5)

The new Hamiltonian is given by

H2 =
1
2

(1 − ω)(x2
1 + X2

1) +
1
2

(1 + ω)(x2
2 + X2

2) +
X1 + X2

2
√

2
(a(x1 − x2)2 + b(X1 + X2)2). (6)

§3. Averaging and periodic orbits

Taking into account that ω ≈ 1, one of them oscillates with high frequency with respect to
the other one and the theory of averaging is suitable to study the system. In particular, the
following Theorem [13] can be applied

Theorem 1. Let us consider the differential system

ẋ = ε f (t, x) + ε2g(t, x, ε), (7)

with x ∈ D ⊆ Rn, t ≥ 0. Moreover f , g, ∂ f /∂x, ∂2 f /∂x2, ∂g/∂x are defined, continuous and
bounded by a constant M independent of ε in [0,∞) × D, 0 ≤ ε ≤ ε0. In addition f and g
are T-periodic in t (T independent of ε). Then, if p is a non degenerate critical point of the
system

ẏ = ε f 0(y),

where

f 0(y) =
1
T

∫ T

0
f (t, y) dt,

there exists a T-periodic solution φ(t, ε) of (7) which is close to p such that

lim
ε→0

φ(t, ε) = p.

The key point is to transform the Hamiltonian differential system defined by (6) into a
system in the form (7). This can be done in several steps. First of all, taking into account that
we are considering ω ≈ 1, we scale the variables and the frequency according to

x j, X j → εx j, εX j, j = 1, 2, 1 − ω→ εν.
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Substituting into the Hamiltonian function, and taking out the common factor ε2, we arrive to

H2 = x2
2 + X2

2 +
ε

2
√

2

[√
2ν(x2

1 + X2
1 − x2

2 − X2
2) + b(X1 + X2)3 + a(X1 + X2)(x1 − x2)2

]
.

The equations of the motion are given by

ẋi =
∂H2

∂X j
, Ẋ j = −

∂H2

∂x j
, j = 1, 2.

Now, we introduce polar coordinates for the pair of variables (x2, X2) in the form

x2 = r cos θ, X2 = r sin θ.

Thus, the differential equations for r and θ turn to be

ṙ =

(
∂H2

∂X
cos θ −

∂H2

∂x
sin θ

)
, θ̇ = −

1
r

(
∂H2

∂x
cos θ +

∂H2

∂X
sin θ

)
.

Explicitly, these equations read as

ṙ =
ε

4
√

2
(a(x1 − r cos θ)(r + 2x1 cos θ − 3r cos 2θ − 4X1 sin θ)+

6b cos θ(X1 + r1/2 sin θ)2
)
,

θ̇ = −2 +
ε

2
√

2r

(
2
√

2νr + a(x1 − r cos θ)(2X1 cos θ − (x1 − 3r cos θ) sin θ)−

3b(X1 + r sin θ)2 sin θ
)
,

(8)

whereas for the variables x1, X1 we obtain
ẋ1 =

ε

4

(
4νX1 + 3

√
2b(X1 + r1/2 sin θ)2 +

√
2a(y − r1/2 cos θ)2

)
,

Ẋ1 =
ε

2
√

2

(√
2νx1 − a(x1 − r1/2 cos θ)(X1 + r1/2 sin θ)

)
.

(9)

On the other hand, the Hamiltonian function is expressed as

H2 = r2+
ε

2
√

2

(√
2ν(x2

1 + X2
1 − r2) + a(X1 + r sin θ)(x1 − r cos θ)2 + b(X1 + r sin θ)2

)
. (10)

From this expression, the radial variable can be obtained as a power series in ε. Up to the first
order we get

r ≈
√

h +
ε

4
√

2h

(√
2ν(h − x2

1 − X2
1)

− a(X1 + h1/2 sin θ)(x1 − h1/2 cos θ)2 − b(X1 + h1/2 sin θ)3
)
.

(11)
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Now, we introduce the variable θ as a new time in the differential equations for x1 and X1.
After replacing r by (11), and expanding in power series of ε up to the second order, we get

dx1

dθ
= −

ε

4
√

2

(
2
√

2νX1 + a(x1 − h1/2 cos θ)2 + 3b(X1 + h1/2 sin θ)2
)

+ ε2F(x1, X1, θ; h, ε),

dX1

dθ
=

ε

2
√

2

(√
2νx1 + a(x1 − h1/2 cos θ)(X1 + h1/2 sin θ)

)
+ ε2G(x1, X1, θ; h, ε),

where F and G are 2π-periodic in θ and satisfy the conditions of Theorem 1 for h > 0. Thus,
according to this Theorem, the non degenerate equilibrium points of the averaged system give
rise to periodic orbits. The equations of the averaged system are given by

dx1

dθ
= −

ε

8
√

2

(
4
√

2νX1 + a(h + 2x2
1) + 3b(h + 2X2

1)
)
,

dX1

dθ
=

ε

2
√

2

(√
2νx1 + ax1X1

)
.

By equating to zero these equations, we obtain the equilibrium points

E1,2 ≡

±
√

4ν2(2a − 3b) − a2h(1 + 3b)
2a3 ,−

√
2ν
a

 ,
E3,4 ≡

0, −2ν ±
√

4ν2 − 3bh(a + 3b)

3
√

2b

 .
Consequently, based on Theorem 1, we can establish the following result

Theorem 2. For ε , 0 sufficiently small and at energy level h > 0 of the Hamiltonian H
given in (1) and ω close to one, we find for its associated Hamiltonian system (2) periodic
solutions bifurcating from the origin. The number of these periodic solutions depends on the
parameters a, b, h and ν. Assuming a > 0

1. If 4ν2(2a − 3b) − a2h(1 + 3b) > 0 and 4ν2 − 3bh(a + 3b) > 0, there are four periodic
solutions.

2. If (4ν2(2a−3b)−a2h(1 + 3b))(4ν2 −3bh(a + 3b)) < 0, there are two periodic solutions.

3. If 4ν2(2a − 3b) − a2h(1 + 3b) < 0 and 4ν2 − 3bh(a + 3b) < 0, there are not periodic
solutions.

Even more, the linear stability of these orbits follows from the stability character of the
equilibrium points, which is summarized in Figure 1. A remarkable fact is that, for h small
enough, the number of periodic orbits, their bifurcations and stability match with the number
of critical points, bifurcations and character of the critical points of the effective potential
associated to the original Hamiltonian system given by (1).

The periodic orbits can be computed by inverting the process of averaging. Thus, starting
with a value of h and ν and the coordinates of an equilibrium point, once fixed a and b, we
recover r from (11) to obtain the original set of coordinates (x, y, X,Y), after using (5). As
an example, we depict the four periodic orbits when ω = 0.9, h = 0.08 and a and b are the
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Figure 1: Stability character of the equilibrium points of the averaged system, when a = 1, in
terms of b and h.

classical Hénon-Heiles parameters (a = 1, b = −1/3), that can be viewed in the left panel of
Figure 2. There are four periodic orbits, a stable one centered at the origin and three unstable
orbits that are at the same energy level. As a consequence, there is a heteroclitic connection
between the three unstable orbits, allowing a mechanism of transport between different zones
of the phase space (see the right panel of Figure 2).
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