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FRACTIONAL CALCULUS AS A
MODELING FRAMEWORK

Luis Vázquez, María Pilar Velasco, David Usero
and Salvador Jiménez

Abstract. Fractional Calculus represents a natural instrument to model nonlocal phe-
nomena either in space or in time. From Physics and Chemistry to Biology, a vast amount
processes involve different space/time scales. For many of those, the dynamics can be
formulated by fractional differential equations that include the nonlocal effects. We give
a panoramic view of the problem and the associated numerical challenges.

Keywords: Fractional Calculus, fractional differential equations, nonlocal effects.

AMS classification: AMS 34A08, 35R11.

§1. Introduction: fractional derivatives

The tools of Fractional Calculus are as old as calculus itself. Fractional Calculus deals with
the study of so-called fractional order integral and derivative operators over real or complex
domains, and their applications. Such operators emerge with the objective to generalize the
concepts of integral and derivative to non-integer orders. Thus, the designation of “Integration
and Derivation of Arbitrary Order” is more appropriate.

The origin of Fractional Calculus is in 1675, when Leibniz introduces the notion of n-
order derivative of a function. Next, in 1695, the first published results were cited in a letter
from L’Hôpital to Leibniz, where L’Hôpital exposes the question of the possible meaning of
the derivative of order n = 1/2. The intuitive answer of Leibniz was: “It would seem that
very useful consequences will be extracted some day from these paradoxes, since there is no
paradox without usefulness.”[1]

From this moment on, many mathematicians have studied this topic and they have given
their contributions to the development of the Fractional Calculus. Among others, we can cite
Euler, Lagrange, Fourier, Abel, Liouville, Riemann, Grünwald, Letnikov, Holmgren, Cauchy,
Hadamard, Hardy, Riesz, Weyl. . .
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A first approximation to the concept of fractional derivative can be taken from the classi-
cal definition of derivative of different orders:

f ′(x) = lim
h→0

f (x + h) − f (x)
h

(1)

f ′′(x) = lim
h→0

f ′(x + h) − f ′(x)
h

= lim
h1→0

limh2→0
f (x+h1+h2)− f (x+h1)

h2
− limh2→0

f (x+h2)− f (x)
h2

h1

= lim
h→0

f (x + 2h) − 2 f (x + h) + f (x)
h2 (2)

dn f
dxn (x) = lim

h→0

∑
0≤m≤n(−1)m

(
n
m

)
f (x + (n − m)h)

hn , where
(
n
k

)
=

n!
k!(n − k)!

, 0 ≤ k ≤ n (3)

If we consider the generalization of the concept of factorial through the function Gamma,
which we will analyze in the following section, we obtain the definition of fractional deriva-
tive of Grünwald-Letnikov:

Dq f (x) = lim
h→0

1
hq

∞∑
m=0

(−1)m
(
q
m

)
f (x + (q − m)h), x, h ∈ R, q ∈ N, (4)

Dα f (x) = lim
h→0

h−α
x−a

h∑
m=0

(−1)m Γ(α + 1)
m!Γ(α − m + 1)

f (x − mh), x ∈ [a, b], h > 0, α ∈ R+. (5)

Another important definition of the fractional integral and derivative corresponds to Riemann-
Liouville:

• Left-side Riemann-Liouville Fractional Integral of order α > 0:

aD−αx φ(x) =
1

Γ(α)

∫ x

a
(x − t)α−1φ(t)dt, x > a. (6)

• Right-side Riemann-Liouville Fractional Integral of order α < 0:

xD−αb φ(x) =
1

Γ(α)

∫ b

x
(x − t)α−1φ(t)dt, x < b. (7)

• Left-side Riemann-Liouville Fractional Derivative of order α > 0:

aDα
xφ(x) =

1
Γ(n − α)

(
∂

∂x

)n ∫ x

a
(x − t)α−(n−1)φ(t)dt, x > a. (8)

• Right-side Riemann-Liouville Fractional Derivative of order α < 0:

xDα
bφ(x) =

1
Γ(n − α)

(
−
∂

∂x

)n ∫ b

x
(x − t)α−(n−1)φ(t)dt, x < b. (9)
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In all cases n ∈ N, such that 0 ≤ n − 1 < α < n.
Related to the integrals of Riemann-Liouville, the definition of Caputo fractional deriva-

tive appears:

• Left-side Caputo Fractional Derivative of order α > 0:

C
a Dα

xφ(x) = aDα
x

φ(x) −
n−1∑
k=0

φ(k)(a)
k!

(x − a)k


=

1
Γ(n − α)

∫ x

a

φ(n)(t)
(x − t)α+1−n dt, x > a. (10)

• Right-side Caputo Fractional Derivative of order α < 0:

C
x Dα

bφ(x) =
(−1)n

Γ(n − α)

∫ b

x

φ(n)(t)
(x − t)α+1−n dt, x < b. (11)

We have, as before, n ∈ N such that 0 ≤ n − 1 < α < n, and now the n + 1 derivatives of
function φ must be continuous and bounded in [a, b].

A basic consideration related to these operators is that they allow to introduce memory
terms in a natural form. This can be shown through Calculus Fundamental Theorem:

dx
dt

= F(t), x(0) = x0, (12)

can be expressed in integral form as

x(t) = x0 +

∫ t

0
1 · F(τ)dτ. (13)

Substituting constant 1 by a convolution kernel introduces the memory term:

x(t) = x0 +

∫ t

0
K(t − τ) · F(τ)dτ (14)

and we can consider this as a base to construct other possible definitions for fractional inte-
grals.

1.1. From Factorial to the Gamma Function
The Gamma function is a function that generalizes the definition of the factorial to non-
positive numbers. Its definition is:

Γ(z) =

∫ ∞

0
sz−1e−sds (15)

for any complex number z with positive real part.
Using integration by parts in (15), a fundamental property of the Gamma function is

obtained:
Γ(z) = (z − 1)Γ(z − 1), (16)
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which allows to give the Gamma function of a positive integer number as

Γ(n) = (n − 1)! . (17)

In this context, the Gamma function is a generalization of the concept of factorial.
Now, if we introduce this in the derivative of a monomial function and we study both the

ordinary and fractional case with the fractional derivative of Riemann-Liouville, we observe
that the fractional generalization can be made formally as:

dn

dxn xm =
m!

(m − n)!
xm−n ⇒

dα

dxα
xµ =

Γ(µ + 1)
Γ(µ − α + 1)

xµ−α. (18)

Special functions related to the eigenfunctions of fractional operators are the Mittag-
Leffler functions. They appear in the solution of many fractional differential equations. The
Mittag-Leffler functions are generalizations of the exponential function and they was intro-
duced by the mathematician G.M. Mittag-Leffler in 1903:

Eα(t) =

∞∑
k=0

tk

Γ(αk + 1)
(α > 0, α ∈ R),

Eα,β(t) =

∞∑
k=0

tk

Γ(αk + β)
(α, β > 0, α, β ∈ R).

(19)

For some values of the parameters α, β, Mittag-Leffer functions return known classical func-
tions, for example:

E1(t) = et, (20)

E2(t) = cosh(
√

t). (21)

The relevance of the Mittag-Lefler functions is their behavior as generalized exponential
functions associated to the Riemann-Liouville and Caputo fractional derivatives:

0Dα
t tα−1Eα,α(λtα) = λtα−1Eα,α(λtα), (22)

and
C
0 Dα

t Eα(λtα) = λEα(λtα). (23)

§2. New mathematical scenarios: new families of functions and
equations.

Fractional Calculus presents many applications in different areas, as it is shown in the book
[2]:

“The purpose of this book is to explore the behavior of biological systems from the per-
spective of fractional calculus. Fractional calculus, integration and differentiation of an ar-
bitrary or fractional order, provides new tools that expand the descriptive power of calculus
beyond the familiar integer-order concepts of rates of change and area under a curve.”
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“Fractional Calculus adds new functional relationships and new functions to the familiar
family of exponentials and sinusoids that arise in the realm of ordinary linear differential
equations.”

Fractals and Fractional Calculus generate parameters of intermediate order: dimensions
for the former, arbitrary integration and differentiation orders for the latter. This has been
deeply studied in the literature ([3], [7]), allowing to achieve a better modeling for many
different applications.

For instance, let us consider the following contexts in the Classical Physics, whose basic
equations are the following:

• Hooke Law: F(t) = kx(t)

• Newtonian Fluid: F(t) = k dx
dt (t)

• Newton second law: F(t) = k d2 x
dt2 (t)

As an interpolation of these equations, a fractional approach gives the possibility to look
for intermediate or mixed behaviours:

F(t) = k
dαx
dtα

(t) (24)

Some other contexts are the diffusion processes associated to the basic diffusion equation:

∂u
∂t

=
∂2u
∂x2 , (25)

as we show in the following table:

Law Darcy: Fourier: Fick: Ohm:
→
q= −K

−→

Grad h
→

Q= −κ
−→

Grad T
→

f = −D
−→

Grad C
→

j= −σ
−→

Grad V
Flux Subterranean Heat: Q Solute: f Charge: j

Water: q
Potential Hydrostatic Temperature: T Concentration: C Voltage: V

Charge: h
Medium’s Hydraulic Thermal Diffusion Electric
Property Conductivity: K Conductivity: κ Coefficient: D Conductivity: σ

The diffusion equation can be generalized through the fractional operators that allow to
make a natural interpolation among equations, starting with the first order wave equation and
ending with the second order wave equation:

First order wave equation (hyperbolic):
∂u
∂t

=
∂u
∂x

(26)

Interpolation:
∂u
∂t

=
∂αu
∂xα

(27)

Diffusion equation (parabolic):
∂u
∂t

=
∂2u
∂x2 (28)

Interpolation:
∂αu
∂tα

=
∂2u
∂x2 (29)
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Wave Equation (hyperbolic):
∂2u
∂t2 =

∂2u
∂x2 (30)

Another fractional approach associated to the previous one is the use of Dirac-type frac-
tional equations according to the following scheme:

A
∂ψ

∂t
+ B

∂ψ

∂x
= 0

A
∂αψ

∂tα
+ B

∂ψ

∂x
= 0

−−−−−−−−−−−−−−−−−−−−−−−→

ψ =

(
ϕ

ξ

) A
∂1/2ψ

∂t1/2 + B
∂ψ

∂x
= 0

A2 = I
B2 = I
{A, B} = 0

x

x
∂2u
∂t2 −

∂2u
∂x2 = 0

γ = 2α
−−−−−−−−−−−−−−−−−−−−−−−→

∂γu
∂tγ
−
∂2u
∂x2 = 0

∂u
∂t
−
∂2u
∂x2 = 0

In this way, equation

A
∂1/2ψ

∂t1/2 + B
∂ψ

∂x
= 0 (31)

can be interpreted as the description of two coupled diffusion processes or a diffusion pro-
cess with internal degrees of freedom. In this equation, each component, ϕ and ξ, satisfies
the standard diffusion equation and they are named diffunors similarly to the spinors of the
Quantum Mechanic. This provides another form of studying the interpolation between the
hyperbolic operator of the wave equation and the parabolic one of the classical diffusion
equation. Depending on the chosen representation of the Pauli Algebra, that A and B must
verify, we obtain a system of equations coupled or decoupled:

A1 =

(
0 1
1 0

)
B1 =

(
0 1
−1 0

)
=⇒

{
∂αt ϕ = ϕ
∂αt ξ = −ξ

(32)

A2 =

(
1 0
0 −1

)
B2 =

(
0 1
−1 0

)
=⇒

{
∂αt ϕ = ξ
∂αt ξ = ϕ

(33)

A
∂αψ

∂tα
+ B

∂ψ

∂x
= 0

γ = 2α
−−−−−−−−−−−→

∂γu
∂tγ
−
∂2u
∂x2 = 0

In the study of the temporal inversion (t → −t), we have:

• If α = 1, we have that both the Dirac and wave equations are invariant by temporal
inversion.

• If α = 1/2, the classical diffusion equation and its square root are not invariant by
temporal inversion.
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• Interpolation in: 0 < α < 1. The invariance by temporal inversion is satisfied only for
some specific values

– Fractional Dirac Equation:
α = 1

3 ,
1
5 ,

1
7 , . . . ,

3
5 ,

3
7 ,

3
9 , . . . ,

5
7 ,

5
9 ,

5
11 , . . .

– Fractional Diffusion Equation:
α = 1

3 ,
2
3 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
7 ,

2
7 , . . . ,

6
7 ,

1
9 , . . .

In the study of the space-temporal inversion (x → −x, t → −t), both equations are
invariant by spatial inversion and in the interpolation 0 < α < 1, the invariance by space-
temporal inversion is satisfied for the same values of α in both equations:

α =
1
3
,

2
3
,

1
5
,

2
5
,

3
5
,

4
5
,

1
7
,

2
7
, . . . ,

6
7
,

1
9
, . . .

The fractional Dirac equation is not invariant by temporal translations due to the non-local
character of the time fractional derivative.

Some other fractional differential equations are obtained by considering the root 1/3 of
both the Wave and Diffusion Equations:

Wave Equation: P∂2/3
t ϕ + Q∂2/3

x ϕ = 0 (34)

Diffusion Equation: P∂1/3
t ϕ + Q∂2/3

x ϕ = 0 (35)

where

P3 = I Q3 = −I PPQ + PQP + QPP = 0 QQP + QPQ + PQQ = 0 (36)

A possible realization is in terms of the 3 × 3 matrices associated to the Silvester Algebra:

P =

 0 0 1
ω2 0 0
0 ω 0

 , Q = Ω

 0 0 1
ω 0 0
0 ω2 0

 , (37)

with ω a cubic root of the unity and Ω a cubic root of the negative unity. In this case, ϕ has
three components.

As an example of the associated mathematical problems, let us consider the Cauchy
general problem in the space of the functions whose Laplace and Fourier transforms exist,
LF = L(R+) × F(R):

C Dα
t u(t, x) − λLDβ

xu(t, x) = 0, t > 0, x ∈ R, 0 < α ≤ 1, β > 0, (38)
lim

x→±∞
u(t, x) = 0, u(0+, x) = g(x), (39)

where C Dα
t is the Caputo fractional partial derivative, defined as:

Dα
t u(t, x) = C Dα

t u(t, x) =
1

Γ(1 − α)

∫ t

0

uτ(τ, x)
(t − τ)α

dτ (40)

and where Dβ
x is the Riemann-Liouville fractional partial derivative:

Dβ
xu(t, x) = LDβ

xu(t, x) =
1

Γ(m − β)
∂m

∂xm

∫ x

−∞

u(t, z)
(x − z)β−m+1 dz (41)
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with m ∈ N, 0 ≤ m − 1 < β ≤ m.
The solution to the Cauchy problem is given by:

u(t, x) =
1

2π

∫ ∞

−∞

G(k)Eα(λ(−ik)βtα)e−ikxdk (42)

where G(k) is the Fourier transform of g(x) and Eα is the Mittag-Leffler function (19). As an
example, for β = 1 and g(x) = e−µ|x|, µ > 0, the solution is:

u(t, x) = e−µ|x|Eα(−µλtα). (43)

The momenta of the fundamental solution (g(x) = δ(x), G(k) = 1) for the case β = 1 are
obtained as

< xn >=

∫ ∞

−∞

xnu(t, x)dx = (−λtα)n Γ(n + 1)
Γ(αn + 1)

, n = 0, 1, 2, . . . (44)

§3. Nonlocal phenomena in space and/or time. Applications.

3.1. Non locality
We use the term non-locality if what happens in a spatial point or at a given time depends
on an average over an interval that contains that value. Thus, the non-local effects in space
correspond to long-range interactions (many spatial scales), while the non-local effects in
time suppose memory or delay effects (many temporal scales).

These phenomena are associated to integral or integro-differential equations, which ap-
pear in multiple contexts:

• Potential theory: Newton and Coulomb laws of the inverse of the square of the distance.

• Problems in Geophysics: three-dimensional maps of the Earth’s inside.

• Problems in Electricity and Magnetism.

• Hereditary Phenomena in Physics (materials with memory: hysteresis) and Biology
(ecological processes: accumulation of metals).

• Problems of Evolution of Populations.

• Problems of Radiation.

• Optimization, Control Systems.

• Communication Theory.

• Mathematical Economy.

These different phenomena can be described by fractional differential equations, and it
sets out two fundamental questions:

1. Are the models with space and/or time fractional derivatives consistent with the funda-
mental laws and symmetries of Nature?

2. How can the fractional differentiation order be experimentally observed and how does
a fractional derivative emerge from models without fractional derivatives?



Fractional Calculus as a modeling framework 195

For instance, we saw above that some fractional equations arise as interpolation between
basic equations of Classical Physics. It is interesting to remark that, for instance, interpolation
equation (29) verifies the second law of thermodynamics only if the following condition is
satisfied [4]:

∂α−1u
∂xα−1

∂u
∂x

> 0. (45)

3.2. Relaxation Processes
The fractional equations play an important role in the relaxation processes, as for instance the
processes associated to viscoelastic materials. In these processes, the modeling in the context
of classical mechanics consists in a combination of springs and dampers:

Springs: Hooke Law σ(t) = Eε(t) (46)

Dampers: Newtonian Fluid Law σ(t) = η
dε(t)

dt
(47)

where

σ = Tension; (48)
ε = Deformation; (49)

E = Elastic constant or Young Modulo; (50)
ν = Viscosity Coefficient; (51)

so that the constitutive equation is given by the Maxwell model

dε
dt

=
σ

η
+

1
E

dσ
dt
. (52)

The relaxation module, defined as φ(t) = Ee−tE/η, indicates how the tension by unity of
applied deformation varies.

Between the elastic and viscous limits we may introduce a general fractional interpola-
tion:

σ(t) = Eτβ
dβε(t)

dtβ
. (53)

The Process of Standard Relaxation (Maxwell-Debye) is formulated through an initial
value problem

τ
dφ(t)

dt
= −φ(t), t > 0, φ(0) = φ0, (54)

whose solution is
φ(t) = φ0e−t/τ. (55)

Another initial formulation for the fractional generalization is

φ(t) − φ0 = −τ−1
∫ t

0
φ(t′)dt′ = −τ−1 d−1φ(t)

dt−1 . (56)
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Formally:
φ(t) − φ0 = −τ−β0D−βt φ(t) (57)

where 0D−βt is the Riemann-Liouville operator.
There are also deviations of the Classical Process of Maxwell-Debye Relaxation that are

formulated through an initial value problem:
• Kohlrausch-Williams-Watts (KWW) decay

φ(t) = φ0e−(t/τ)α , 0 < α < 1. (58)

• Nutting potential law:

φ(t) =
φ0

(1 + t
τ
)n
, 0 < n < 1. (59)

These models are used in relaxation processes of deformation in materials and many transi-
tion experiments have been developed between the two behaviors.

Another context of possible application of the fractional models is the propagation of
solar radiation in a planetary atmosphere [5, 6, 8, 9].
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