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NON-REFLECTING BOUNDARY
CONDITIONS FOR SURFACE WATER
WAVE SIMULATION IN THE VICINITY

OF A SOLID BODY
José M. Orellana

Abstract. In this paper, we focus on the modelling of the wake of a solid body moving
through the water. To this end, the flow of an inviscid, barotropic and compressible fluid
around the solid body regarded as motionless is examined. The dynamic behaviour of
the fluid is analysed by means of a two-dimensional Neumann-Kelvin’s coupled model
enhanced with capillarity and inertia terms. For computational purposes, the unbounded
spatial domain must be truncated and then suitable absorbing boundary conditions are
introduced. Difficulties arise mainly from the important difference between properties of
the inner water and the water surface. Singularities appear on the intersection between the
boundaries of the domain and the air-fluid interface. Very different dynamical responses
are noticed according to the location of excitation with respect to the free surface. Nu-
merical illustrations of these results are given and commented.
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§1. Preliminaries

1.1. Introduction
Understanding wave propagation mechanisms on the sea has long been a subject of interest
for many researchers (cf. [7], [9], [12]). Surface water wave phenomenon is due to the bal-
ance between the gravity forces that keep horizontal free surface of the water, the surface
tension that keeps the consistency of the air-water interface, the water inertia and the differ-
ence between air and water pressure. According to the relevant effect that forces the motion,
the waves are usually divided in gravity waves, capillary waves or pressure waves. In our
case, the waves are regarded as interfacial gravity-capillary waves propagating between two
liquid layers with very different properties. The upper layer is the free surface water with an
infinitesimal thickness and small characteristic velocity of wave propagation namely, riddle
velocity. The lower layer is the inner water with a finite or semi infinite thickness and an
high characteristic velocity of wave propagation namely the speed of sound in water. The
waves are generated by the movement of the solid body, interacting with its rigid surface
and propagating all around it, leading to a wake in its vicinity. Free surface flow induced
by an immersed moving body problem is relevant to numerous pratical applications in hy-
drodynamics and aerodynamics. Many theoretical models and numerical methods have been
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Figure 1: Geometry and notations of the problem.

developed to simulate the body-fluid interaction (cf. [10], [8], [11]). After stating the prob-
lem and specifying underlying assumptions, a two dimensional Neumann-Kelvin’s coupled
modelization enhanced with capillarity and inertia terms is proposed (cf. [3]). A linearization
around a steady state is performed and accurate boundary conditions are introduced to carry
out the study in an open domain artificially bounded for computational limitation reasons.
The variational formulation of the problem is deduced and a finite element approximation
in space with a centered finite difference scheme in time is used to approach the solution.
Results are illustrated and discussed.

1.2. Problem statement
Our purpose is to determine the dynamical behaviour of the water surface in the vicinity
of a solid body that moves with an horizontal velocity U and with a possible oscillatory
displacement. To this end, we examine the flow irrotationnal and unviscid of a compressible
and barotropic fluid around the structure seen as fixed. Due to the existence of singularities
at contact points between surface solid body and surface of water and at underwater angular
points, the structure is immersed and its shape is simplified to a cylinder. We consider as
computational domain a rectangular open domain Ω = [−L, L]× [0,H] with an hole of radius
R in its center. Its boundary ∂Ω = Γ0∪Γ1∪Γs∪Γ2∪Γb has unit outward normal vector ν. Γ0
correponds to the bottom of the system, Γs, to the free surface of the water, Γ1 and Γ2, to the
sides through which the water flow enters and leaves Ω and Γb , to the rigid body surface (see
Figure 1). ∂Γs denotes the edges of Γs. For numerical computations, L = 1 m,H = 1 m,R =

5.10−2 m, U = 0.15 m.s−1. A steady flow passes through Ω with horizontal velocity U and a
small disturbance is introduced inside or on the surface of the fluid.

§2. Theoretical modelling

The propagating medium consists of two liquid layers with very different properties and then
two models have to be introduced to take these features into account: an inner fluid model
and a surface model. The global nonlinear dynamical model obtained is linearized around
a steady state. Therefore the global solution is split into a steady state and a transient one.
The lateral boundary conditions are defined separately according to the nature of the state.
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For the steady flow, the most realistic condition is to set the normal velocity. For transient
flow, non-reflecting boundary conditions (NRBC) have to be prescribed for the inlet and the
outlet of Ω in order to avoid any spurious rebounds of the waves reaching the boundaries of
the domain.

2.1. Hypotheses and formulation of the global model
2.1.1. Formulation of the inner fluid model

We assume that the flow is characterized by two variables modelling the mass density ρtot and
the velocity potential Φ that satisfy:

• the conservation of mass equation,

∂ρtot

∂t
+ div(ρtot∇Φ) = 0 in Ω × ]0,T [ , (1)

• the Bernoulli equation for unsteady compressible potential flow (neglecting gravity
effect),

∂Φ

∂t
+

1
2
‖∇Φ‖2 + F(ρtot) = 0 in Ω × ]0,T [ , (2)

where F (ρtot) =

ρtot∫
ρ0

1∂p
ρ∂ρ

dρ+F (ρ0) is the barotropic potential, p, the fluid pressure and

T, the simulation time.

2.1.2. Formulation of the surface model

Applying Newton’s second law of motion to a infinitesimal small surface element of thickness
2ε that vertically moves ηtot, leads to the free surface equilibrium equation:

2ερtot
D2ηtot

Dt2 = −ρtot
∂Φ

∂t
−
ρtot

2
‖∇sΦ‖

2 + σ∆sηtot − ρtotgηtot in Γs × ]0,T [ , (3)

where the forces involved consist in the capillary action σ∆sηtot, the gravity force −ρtotgηtot

and the pressure −ρtot
∂Φ

∂t
−
ρtot

2
‖∇sΦ‖

2 (cf. [3]). For water, the surface tension σ is equal

to 0.075N.m−1 and ε to 10−3m . The subscript s indicates that the differential operator is
considered along the surface Γs.

2.1.3. On the interface

The continuity of normal velocity at the interface leads to the relation:

∂ηtot

∂t
+ U∇sΦ · ∇sηtot =

∂Φ

∂ν
in Γs × ]0,T [ , (4)

taking account of the rotation of the normal to the surface (cf. [3]).
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2.2. Linearization of the governing equations

2.2.1. Steady state

We introduce (ρ0, ϕ0, η0) the solution to the Neumann problems:

−∆ϕ0 = 0, in Ω and
∫

Γs

ϕ0 = 0,

∂ϕ0

∂ν
= 0, in Γ0 ∪ Γb ∪ Γs,

∂ϕ0

∂ν
= (e1 · ν) in Γ1 ∪ Γ2,

(5)

and 
−
ρ0

2
U2 ‖∇sϕ0‖

2 + σ∆sη0 − ρ0gη0 = 0 in Γs,

∂η0

∂νs
= 0 in ∂Γs,

(6)

with ρ0 = 103kg.m−3 and g = 9.8m.s−2. The solution corresponds to a steady quasi uniform
horizontal flow with a digging effect due to the term −ρ0U2 ‖∇sϕ0‖

2 /2 (see Figure 2).

2.2.2. Transient state

We study the evolution of a small disturbance around the steady state (ρ0, ϕ0, η0). The un-
steady waves in the fluid are represented by the perturbation functions ρ, ϕ, η of x(x1, x2)
and t. The problem is formulated with them wherein ρtot(x, t) = ρ0(x) + ρ(x, t),Φ(x, t) =

Uϕ0(x) + ϕ(x, t), ηtot(x, t) = η0(x) + η(x, t). The solution is split into a steady state component
and a transient one. The domain Ω is then cropped by Γ0, Γb, Γs = η0, Γ1equi and Γ2equi. The
new lateral boundaries Γ1equi and Γ2equi correspond to equipotential lines of ϕ0 passing respec-
tively through left upper domain corner and right upper corner of Ω. The artificial boundaries
are chosen far enough from rigid body to consider that steady state flow is uniform in this
area and so the corners of the new domain are right-angled. The disturbance is so small that
it is then reasonable to neglect the non-linear terms in the governing equations. Convective
derivatives with flow velocity U∇sϕ0 are used to derive linearized equations for the surface
fluid. Hence (ρ, ϕ, η) are assured to satisfy the linearized enhanced Neumann-Kelvin’s model
with capillarity:

• the linearized continuity equation,

∂ρ

∂t
+ U∇ρ · ∇ϕ0 + ρ0∆ϕ = 0 in Ω × ]0,T [ . (7)

• the linearized momentum equation for the inner fluid,

∂2ϕ

∂t2 + 2U∇ϕ0 · ∇

(
∂ϕ

∂t

)
+ U2∇ϕ0 · ∇(∇ϕ0.∇ϕ) − c2

f ∆ϕ = 0 in Ω × ]0,T [ . (8)
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Figure 2: Surface vertical displacement η0 vs x1 coordinate with ‘digging’ effect.

• the linearized momentum equation for the surface fluid,

2ερ0

(
∂2η

∂t2 + 2U∇sϕ0 · ∇s
∂η

∂t
+ U2∇sϕ0 · ∇s (∇sϕ0 · ∇sη)

)
= σ∆sη − ρ0gη − ρ0

∂ϕ

∂t
− ρ0U∇sϕ0 · ∇sϕ in Γs × ]0,T [ , (9)

where · denotes the scalar product. Since the domain of study was reshaped the terms ∇sη0
and ∆sη0 are set to zero on Γs and the continuity of normal velocity at the interface becomes:

∂ϕ

∂ν
=
∂η

∂t
+ U∇sϕ0 · ∇sη in Γs × ]0,T [ . (10)

The non-penetrability condition leads to homogeneous Neumann boundary condition for ϕ:

∂ϕ

∂ν
= 0 in Γ0 ∪ Γb × ]0,T [ . (11)

To generate the disturbance of steady state on the surface or in the inner fluid, initial

conditions are set by prescribing ϕ(x, 0) and
∂ϕ

∂t
(x, 0) in Ω and η(x, 0) and

∂η

∂t
(x, 0) in Γs.

2.3. Lateral artificial boundary conditions
Finding appropriate artificial boundary conditions able to handle unbounded problems has
been an important subject of ongoing research (cf. [5]). Absorbing Boundary Conditions
(cf. [4], [6]) or Perfectly Match Layer techniques (cf. [1]) result in our case in multiplying
the number of equations to solve and then in increasing the difficulty of the problem. Non-
reflecting boundary condition imposed in the following on inner fluid lateral edges is :

∂ϕ

∂t
+

(
U
∂ϕ0

∂ν
+ c f

)
∂ϕ

∂ν
= 0 in Γ1equi ∪ Γ2equi × ]0,T [ , (12)
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where c f denotes the speed of sound in the fluid, c f = 103m.s−1. On the surface bounds ∂Γs,
the first non-reflecting conditions used are:

∂η

∂t
+ (U ± cr)

∂η

∂x1
= 0 on x1 = ±L ∀t ∈ ]0,T [ , (13)

where cr denotes the riddle velocity. They are consistent with the natural one dimensional
non-reflecting conditions for a propagating wave at velocity cr in an uniform flow of velocity
U. These boundary conditions are successfully applied to modelize the inner fluid (lower
layer) wave propagation and the corresponding surface movement (see Figure 4). But the time
of simulation required for this case is too short to notice any inaccuracy in the non-reflecting
boundary condition for η because of the important difference between the wave velocities in
each medium. Therefore propagating phenomenon in each fluid layer can barely be observed
with the same time scale. To properly simulate the wave propagation in inner fluid the value
of time step chosen is ∆tv = 10−5s (see Figure 4) while for surface wave propagation is ∆ts =

10−2s (see Figure 3). In addition, singularities in η occur in surface propagating case due
to inappropriate reflecting boundary conditions on ∂Γs (see Figure 3). In fact, singularities
appeared on the intersections between the articifial boundary and the interface when standard
non-reflecting boundary conditions are imposed. To focus our attention on this issue, we only
consider in the remainder of this work, the case where wave propagation is mainly located in
surface layer. For the sake of readability only numerical results on normalized η are given in
following figures.

To design a new non-reflecting boundary conditions, we express the different terms in
the equations (9),(10),(12) on the bounds of the surface ∂Γs. After eliminating the partial
derivatives of ϕ, the small disturbances ϕ and η must satisfy:

Z±
∂η(±L, t)

∂t
+ A±

∂η(±L, t)
∂x1

+ B±
∫ t

0
η(±L, s)ds + C±ϕ(±L, t) = 0 ∀t ∈ ]0,T [ , (14)

Figure 3: Disturbance η of the surface Γs at time t = 100∆ts vs x1 coordinate. Initial distur-
bance is located on the surface Γs and NRBC used is (13).
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Figure 4: Propagation of disturbance ϕ in Ω (left column) and matching normal surface
displacement η (right column) on Γs vs x1 coordinate at times: t = ∆tv, t = 20∆tv, t =

50∆tv, t = 100∆tv. Initial disturbance is located in the inner fluid and NRBC used is (13).
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with

Z± = 1 +
U

(
U ± c f

)
(
c2

r − U2) , A± = 2U ± c f +
2U2

(
U ± c f

)
(
c2

r − U2) , B± =
gU

(
U ± c f

)
2ε

(
c2

r − U2) ,C± =
±Uc f

2ε
(
c2

r − U2) .
The symbol − denotes that condition is on the left boundary of Γs and + on the right one.

§3. Numerical treatment and results

3.1. Variational formulation of the problem

Multiplying (8) by ψ ∈ H1(Ω) and (9) by v ∈ H1(Γs) respectively together with Green’s
formula and (14) application lead to the regularized variational formulation for the coupled
problem (cf. [2]):

Find functions (ϕ, η) ∈ H1(Ω) × H1(Γs) such that ∀(ψ, v) ∈ H1(Ω) × H1(Γs),∫
Ω

ϕ̈ψdx + U
∫

Ω

∇ϕ0 · (∇ϕ̇ψ − ϕ̇∇ψ) dx + c f

∫
Γ

ϕ̇ψdx + c2
f

∫
Ω

∇ϕ · ∇ψdx

−U2c2
f

∫
Ω

(∇ϕ0 · ∇ϕ) (∇ϕ0.∇ψ)dx−c2
f

∫
Γs

η̇ψdx − Uc2
f

∫
Γs

∇sϕ0 · ∇sη ψdx = 0,

2εc f
2
∫

Γs

(
η̈v + U∇sϕ0 (∇sη̇v − η̇∇sv) − U2(∇sϕ0 · ∇sη)(∇sϕ0 · ∇sv)

)
dσ

−2εc f 2U
(
U

∫
Γs

v∆sϕ0 (∇sϕ0 · ∇sη)dσ +

∫
Γs

v∆sϕ0η̇dσ
)

+
c2

f

ρ0

∫
Γs

σ∇sη.∇sv + ρ0ηgv dσ

+c2
f

∫
Γs

ϕ̇vdσ − αc2
f U

∫
Γs

∇sϕ0 · ∇sv ϕdσ − αc2
f U

∫
v∆sϕ0ϕdσ

+ (1 − α) c2
f U

∫
Γs
v∇sϕ0 · ∇sϕdσ +

[(
E±η̇ + F±

∫ t
0 η ds

)
v
]L

−L
= 0,

(15)

where E± and F± are functions of Z±, A±, B±,C±, cr,U, g, ε and α is introduced to eliminate
ϕ(L, t) and hence improve the regularity of the problem. The term ϕ(−L, t) can be set to zero
since ϕ is determined up to an additive constante.‘Over dot’ notations are used to denote time
partial derivatives.

3.2. Numerical approach and results

The physical field approximation is performed by finite element method and time field ap-
proximation by centered finite difference scheme. Meshes are generated by GMSH and FEM
calculations are carried out with python module of GETFEM. Only the vertical displacement
of the surface is shown since the wave propagation profile is not significant at the time scale
concerned. Singularities are no longer present on ∂Γs and waves can get out of computational
domain without generating spurious significant reflections (see Figure 5 and 6) .
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Figure 5: Disturbance η of the surface Γs vs x1 at : t = 100∆ts, t = 500∆ts, t = 1000∆ts, t =

2000∆ts. Initial disturbance is located on the surface Γs and NRBC used is (14).

Figure 6: Comparisons of the results for η(−L, t) obtained by NRBC (13) and (14) over
simulation time 2000∆ts. Similar results are found for η(L, t).

3.3. Conclusion

The modelling of the wake of a solid body in the water leads to deal with a wave propaga-
tion problem with complex difficulties. To apply standard methods of resolution intended for
bounded domains, artificial boundaries are introduced and appropriate local non-reflecting
boundary conditions are devised. They involve neither a big additionnal amount of calcu-
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lation nor any singularities. Nevertheless to address a more comprehensive case, further
investigations need to be done which will be the subjects of future works.
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