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NON-SPECTRAL FREQUENCY
INDICATORS

María Antonia Navascués, María Victoria Sebastián
and Carlos Ruiz

Abstract. The spectral methods (in terms of trigonometric polynomials) are suitable to
model periodic or near periodic phenomena. However some experimental variables are
far from periodicity. We describe a numerical procedure to obtain trend curves for historic
data or short sampled signals, using orthogonal expansions. The approximants chosen are
of Legendre type, and perform a low-pass filtering to the data. Additionally, we propose
a numerical quantifyer of the variation of the trend curve whose character is non-spectral.
In the second part of the text we perform numerical simulations to test the method: the
first one is associated with standard models as Gaussian and sinusoidal functions, the
second involves a historic record of the Spanish stock reference index IBEX 35.
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§1. Introduction

The traditional approach for the processing of sampled signals or historic data has been per-
formed by means of Fourier (spectral) techniques. This procedure has the disadvantage of
requiring a hypothesis of periodicity of the records, since the functions involved are trigono-
metric. However some time series are far from periodicity. Further we believe that the poly-
nomial orthogonal expansions are quite unexplored so far in the treatment of this kind of
problems. In this article we present a method to obtain trend curves for historic data or short
sampled signals using Legendre poynomials and series expansions. The approximants ob-
tained perform a low-pass filtering to the data. At the same time we propose a quantifyer of
the variation of the smoothed curve. Pointwise, uniform and mean-square convergences of the
sums are analyzed when the time step tends to zero with the single hypothesis of continuity.
At the same time we present numerical simulations in order to compare the method described
with traditional numerical integration techniques for the computation of the parameter.

§2. Spectral parameters

We consider the general framework of the space of complex square integrable functions
L2(2π), endowed with the inner product

< x, y >=
1

2π

∫
I

x(t)y∗(t) dt,
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where I = [−π, π] and y∗ is the complex conjugate of y. L2(2π) is a Hilbert space ([5]). The
norm associated (in quadratic mean or 2-norm) is defined as

‖x‖2 =< x, x >=
1

2π

∫
I
|x(t)|2dt.

Let us consider ϕn(t) = eint for n ∈ Z. The system {ϕn(t)}n∈Z is an orthonormal basis of
L2(2π). The complex Fourier coefficients of x(t) are defined as

kn =< x, ϕn >=
1

2π

∫
I

x(t)e−intdt.

Then

x(t) =

+∞∑
n=−∞

kneint,

in L2-sense. The inner product can be obtained by means of the coefficients as well:

< x, y >=

+∞∑
n=−∞

kx
n(kyn)∗,

where kx
n and kyn are the Fourier coefficients of x(t) and y(t), respectively.

The real Fourier coefficients (an, bn) of real functions f are related to the complex according
to the equalities

k0 = a0/2,

kn = (an − ibn)/2.

From the Fourier coefficients we obtain the spectral moments, and other useful parameters of
the signal x.

The spectral moment of order k is defined as:

mk =

∫ +∞

−∞

ωkS (ω) dω,

where S (ω) is the power spectrum,

S (ω) = x̂(ω)x̂∗(ω) = |̂x(ω)|2,

and x̂(ω) is the Fourier Transform of the real signal x(t), defined as

x̂(ω) =
1

2π

∫
I

x(t)e−iωtdt. (1)

Since S (−ω) = S (ω), the odd moments are null. For the computation of the even moments
we consider the discretized frequencies ω = ωn = n. In this case

S (n) = |̂x(n)|2.
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According to (1)

x̂(n) =
1

2π

(∫
I

x(t) cos(nt) dt − i
∫

I
x(t) sin(nt) dt

)
,

x̂(n) =
1
2

(an − ibn),

where an, bn are the real Fourier coefficients of the real signal. Hence

S (n) = |̂x(n)|2 =
1
4

(a2
n + b2

n) = |kn|
2,

where kn are the complex coefficients, n = 1, 2, . . .
The discrete spectral moment of order k (even) is defined as

mk =

+∞∑
n=−∞

nkS (n),

and thus

mk =

+∞∑
n=−∞

nk |kn|
2.

The Activity (or energy) A of x(t) is defined as

A = ‖x‖2 =< x, x >=
1

2π

∫
I
|x(t)|2dt =

+∞∑
n=−∞

|kn|
2,

due to Parseval’s identity. The mobility M of x is the ratio

M =

(
m2

m0

)1/2

=

(∑+∞
n=−∞ n2|kn|

2∑+∞
n=−∞ |kn|

2

)1/2

.

M is then the square root of the average quadratic frequency, where the weight of the fre-
quency n is the n-th power of the signal. Consequently this parameter is an index of mean
frequency of the signal. Moreover, the Mobility is the square root of the quotient of zero-th
moment of the derivative divided by the moment of the signal itself. Thus

M =


∫

I |x
′(t)|2∫

I |x(t)|2

1/2

. (2)

By analogy to the periodic case, we propose the use of the parameter defined in (2) as an
indicator of the variation of any smooth curve, even in case of no periodicity. From here on,
we will call this Variation Parameter (V). It’s a descriptor of the change of the signal, with
respect to its amplitude.
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§3. Numerical Legendre sum

Let {pn}
∞
n=0 be the system of normalized polynomials of Legendre in the interval I = [−1, 1].

These functions are orthonormal with respect to the inner product (see for instance [4])

( f , g) =

∫
I

f (t)g(t) dt,

whose associate norm is defined as

‖ f ‖2 =

(∫
I
| f (t)|2

)1/2

.

If the expansion of f in terms of Legendre polynomials is

f ∼
+∞∑
n=0

cn pn,

the series converges to f in the ‖ · ‖2-norm (in quadratic mean). Additionally we consider the
uniform (or supremum) norm for a continuous function g defined on the compact interval I
(g ∈ C(I)),

‖g‖∞ = max{|g(t)| : t ∈ I}.

Let us consider a signal x(t), known by its samples {(tn, xn)}Nn=0, and let h = max(tn − tn−1)
be the diameter of the associated partition. Let x = x(t) be a broken line interpolant of x(t)
corresponding to the sampled data, and let us construct a Legendre sum of order m (S mx(t))
of the approximant. This function will provide a trend curve for the function x(t).
The modulus of continuity of a continuous function g is defined as

ωg(δ) = sup{|g(t) − g(t′)|; |t − t′| ≤ δ, t, t′ ∈ I}.

The following result can be read in [2].

Lemma 1. If x ∈ C(I) the uniform distance between x and x is bounded by the modulus of
continuity ωx of x as

‖x − x‖∞ ≤ ωx(h).

Consequently, x tends to x uniformly when h tends to zero.

By g ∈ Lip β (g is Hölder-continuous with exponent β) we mean that there exists M ≥ 0
such that

|g(t) − g(t′)| ≤ M|t − t′|β

∀ t, t′ ∈ I.

Lemma 2. g ∈ Lip β if and only if ωg(δ) ≤ Kδβ.

Proof. See for instance [1]. �
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Theorem 3. Let x ∈ C(I) be the original function providing the data. The Legendre expansion
defined by means of x converges in quadratic mean to x as m tends to infinity and h tends to
zero.

Proof. Let S mx be the m-th partial sum of the Legendre series of x, and let us consider

‖x − S mx‖2 ≤ ‖x − x‖2 + ‖x − S mx‖2. (3)

In the first term we argue that

‖x − x‖2 =

(∫
I
|x(t) − x(t)|2dt

)1/2

≤
√

2 ‖x − x‖∞

and hence,
‖x − S mx‖2 ≤

√
2 ‖x − x‖∞ + ‖x − S mx‖2.

Using Lemma 1, the distance in L2(I) between the signal and the finite sum is then bounded
as:

‖x − S mx‖2 ≤
√

2 ωx(h) + ‖x − S mx‖2.

The uniform continuity of x on I, implies that limωx(h) = 0 as h tends to zero ([1]). The
second term of (3) goes to zero as m tends to infinity due to the convergence in quadratic
mean of the Legendre series of x since x ∈ C(I) ⊆ L2(I). �

Lemma 4. If f ∈ Cp[−1, 1] is such that f (p) ∈ Lip δ, then the m-th Legendre sum of f satisfies
the inequality

‖ f −
m∑

n=0

cn pn‖∞ ≤
K ln m

mp+δ−1/2

for p + δ ≥ 1/2.

Proof. See for instance [6]. �

Theorem 5. The Legendre expansion of the broken line interpolant x converges pointwise
and uniformly to x on the interval I = [−1, 1].

Proof. In the reference [3], the author proves that the Legendre series of any function f ∈
Lp(I) such that p > 4/3 converges pointwisely to f almost everywhere. The interpolant x is
continuous on a compact interval and then it belongs to L2(I), this fact ensures the pointwise
convergence almost everywhere.
It is clear that x(t) ∈ Lip1. Now, we apply Lemma 4 for p = 0 and δ = 1 obtaining

‖x −
m∑

n=0

cn pn‖∞ ≤
K ln m
m1/2 .

As m tends to infinity the Legendre sum tends to x and the uniform convergence is achieved
on the interval I = [−1, 1]. This fact ensures the pointwise convergence on the whole interval.

�
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Remark 1. This result is true for any step h.

Theorem 6. Let x ∈ C(I) be the original function providing the data. The Legendre expansion
obtained numerically converges uniformly to x as m→ ∞ and h→ 0.

Proof. The uniform continuity of x(t) on I implies that limωx(h) = 0 as h tends to zero ([1]).
Let S mx be the m-th partial sum of the Legendre series of x. Let us consider

‖x − S mx‖∞ ≤ ‖x − x‖∞ + ‖x − S mx‖∞.

The first term goes to zero if h → 0 due to Lemma 1. The second term tends to zero as well
when m→ ∞ according to the previous Theorem, obtaining the result.

�

Remark 2. The Legendre expansion obtained numerically converges in L2(I) as well, since
for a continuous function defined in compact intervals, the uniform convergence implies the
convergence in quadratic mean. Same is true for pointwise convergence.

Remark 3. The former theorem ensures the goodness of the procedure to represent and eval-
uate the signal whenever the step and the expansion order are suitably chosen, with the single
hypothesis of continuity.

§4. Numerical simulations

In this Section we present some numerical examples in order to compare the method proposed
with another standard technique of numerical integration.

4.1. Gaussian function

We considered the Gaussian function f (t) = e−t2
, sampled with step h = 2−7 in the interval

[−1, 1] and obtained its numerical Legendre sums for different degrees. We computed the
Fourier-Legendre coefficients using a broken line interpolant, and by means of the compound
trapeze rule. We obtained the Variation Parameter for every sum, comparing it with its exact
value using the expression (2). We recorded the relative errors, as the absolute value of the
difference between the approximate and exact Variations, divided by the exact one. It can
be observed that the errors are lower in the polygonal case. The results for every degree and
method are collected in Table 1.

4.2. Sinusoidal functions

In this item we dealt with the sinusoidal functions sin(πt), sin(2πt), sin(3πt),sin(4πt), sin(5πt),
sampled by a step h = 8×10−3 in the interval [−1, 1], obtained their numerical Legendre sums
with different degrees and computed the error in the Variation Parameter. The rest is similar
to the previous Subsection (Tables 2, 3, 4).
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Trapeze Broken line
n = 5 1.0 × 10−2 1.0 × 10−2

n = 6 2.1 × 10−4 7.8 × 10−4

n = 7 2.1 × 10−4 7.8 × 10−4

n = 8 2.8 × 10−3 6.0 × 10−5

n = 9 2.8 × 10−3 6.0 × 10−5

n = 10 5.7 × 10−3 1.4 × 10−5

n = 11 5.7 × 10−3 1.4 × 10−5

n = 12 9.1 × 10−3 1.6 × 10−5

n = 13 9.1 × 10−3 1.6 × 10−5

n = 14 8.6 × 10−3 1.6 × 10−5

Table 1: Errors in the Variation Parameter for different Legendre sums (with increasing degree
n) of the function f (t) = e−t2

obtained by two numerical procedures.

Trapeze Broken line Trapeze Broken line
f (t) = sin(πt) f (t) = sin(πt) f (t) = sin(2πt) f (t) = sin(2πt)

n = 31 5.7 × 10−3 8.4 × 10−8 5.7 × 10−3 5.5 × 10−7

n = 32 5.7 × 10−3 8.4 × 10−8 5.7 × 10−3 5.5 × 10−7

n = 33 6.3 × 10−3 7.1 × 10−7 6.3 × 10−3 1.2 × 10−6

n = 34 6.3 × 10−3 7.1 × 10−7 6.3 × 10−3 1.2 × 10−6

n = 35 6.9 × 10−3 4.6 × 10−6 6.8 × 10−3 4.0 × 10−6

n = 36 6.9 × 10−3 4.6 × 10−6 6.8 × 10−3 4.0 × 10−6

Table 2: Errors in the computation of the Variation Parameter for different Legendre sums
(with increasing degree n) of the functions f (t) = sin(πt) and f (t) = sin(2πt) obtained by
both numerical procedures.

4.3. Historic stock record

In this case we considered the daily closing prices of the IBEX 35 over the year 2004 (256
data) and obtained its Legendre sums with the same procedures (see Figure 1). Since we
cannot compare the Parameters with their exact values, we recorded the square root of the
mean square error, divided by the maximum of the time series. The results for different
degrees and methods are depicted in Table 5. We can observe lower errors for the broken line
interpolant in this case as well.
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Trapeze Broken line Trapeze Broken line
f (t) = sin(3πt) f (t) = sin(3πt) f (t) = sin(4πt) f (t) = sin(4πt)

n = 31 5.7 × 10−3 1.3 × 10−6 5.7 × 10−3 2.4 × 10−6

n = 32 5.7 × 10−3 1.3 × 10−6 5.7 × 10−3 2.4 × 10−6

n = 33 6.3 × 10−3 2.0 × 10−6 6.3 × 10−3 3.1 × 10−6

n = 34 6.3 × 10−3 2.0 × 10−6 6.3 × 10−3 3.1 × 10−6

n = 35 6.9 × 10−3 2.9 × 10−6 6.9 × 10−3 1.6 × 10−6

n = 36 6.9 × 10−3 2.9 × 10−6 6.9 × 10−3 1.6 × 10−6

Table 3: Errors in the computation of the Variation Parameter for different Legendre sums
(with increasing degree n) of the functions f (t) = sin(3πt) and f (t) = sin(4πt) obtained by
both numerical procedures.

Trapeze Broken line
n = 31 5.7 × 10−3 3.9 × 10−6

n = 32 5.7 × 10−3 3.9 × 10−6

n = 33 6.3 × 10−3 4.5 × 10−6

n = 34 6.3 × 10−3 4.5 × 10−6

n = 35 6.9 × 10−3 2.0 × 10−7

n = 36 6.9 × 10−3 2.0 × 10−7

Table 4: Errors in the computation of the Variation Parameter for different Legendre sums
(with increasing degree n) of the function f (t) = sin(5πt) obtained by both numerical proce-
dures.

Figure 1: Time series of IBEX 35 over the year 2004 (dotted) along with its trend curve of order 21.
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RMSE trapeze RMSE broken line
n = 21 1.6 × 10−2 9.0 × 10−3

n = 22 2.1 × 10−2 8.5 × 10−3

n = 23 2.1 × 10−2 8.3 × 10−3

n = 24 2.7 × 10−2 8.1 × 10−3

n = 25 2.7 × 10−2 7.9 × 10−3

n = 26 3.5 × 10−2 7.9 × 10−3

n = 27 3.5 × 10−2 7.8 × 10−3

n = 28 4.6 × 10−2 7.8 × 10−3

n = 29 4.6 × 10−2 7.3 × 10−3

n = 30 5.9 × 10−2 7.3 × 10−3

n = 31 5.9 × 10−2 7.2 × 10−3

n = 32 7.4 × 10−2 7.2 × 10−3

n = 33 7.4 × 10−2 6.6 × 10−3

n = 34 9.1 × 10−2 6.5 × 10−3

Table 5: Relative errors for both trapeze and broken line procedures for different Legendre
sum calculations (with increasing degree n) for closing daily values of IBEX in year 2004.
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