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A NEW INHOMOGENEOUS LOGNORMAL
DIFFUSION PROCESS WITH EXOGENOUS

FACTORS IN THE DIFFUSION
COEFFICIENT
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Abstract. We propose a new non-homogeneous one-dimensional stochastic lognormal
diffusion process, in which a time function (exogenous factor) is introduced into the dif-
fusion coefficient of the process. This new approach can be considered an extension of
the homogeneous lognormal process (see [1] and [12]). From the corresponding Ito’s
stochastic differential equation, we obtain the probabilistic characteristics of the model,
i.e. the transition probability density function and the moments of the process. Finally,
we develop the statistical inference of this model, via maximum likelihood with discrete
sampling.

Keywords: Lognormal diffusion process, Exogenous factors, trends function, Likelihood
estimation in diffusion process.
AMS classification: 60J60, 62M05.

§1. Introduction

Stochastic diffusion processes are useful instruments for modelling phenomena, and many
scientific disciplines make use of these models to reflect behaviour in areas such as the econ-
omy and the financial world, medicine, biology and physics. Accordingly, both in general and
in particular cases, these processes are of great importance in the management of probabilis-
tic and statistical problems. For example, problems related to statistical inference (confidence
bands, the proposal and testing of hypotheses, etc.) and first-passage time problems for cer-
tain types of barriers may be addressed using this approach. Important papers in this field
include Tintner et al. [12] and Al Eideh et al. [1] for the lognormal process, Skiadas et al.
[11] for the Bass process, Giovanis et al. [5] for the logistic process, Ferrante et al. [4] for
the Gompertz process and Gutiérrez et al. [7] for the Gamma process.

However, in most of these studies, the processes considered are homogeneous; in other
words, their infinitesimal moments depend only on the state space, which means that the
possible influences on the subject variable are functions of this same variable. This fact
restricts the scope of application, as well as the possibility of introducing information other
than the variable of interest. These limitations are apparent in many applications, in which
deviations of the study data from the trend of the homogeneous process can be observed.
Accordingly, we must distinguish between external influences (exogenous factors) and the
variable actually modelled by the process (i.e., the endogenous variable), whose evolution in
time is known. The inclusion of these temporal functions in the drift of the process provides



132 Ahmed Nafidi and Ramón Gutiérrez- Sánchez

a better fit and, at the same time, enables external control over the behaviour of the variable
governed by the process.

The use of exogenous factors with respect to stochastic diffusion processes has been pro-
posed by Tintner and Singupta [12] and by Gutiérrez et al [8] for the lognormal process, by
Albano et al. [2], Ferrante et al. [3], Gutiérrez et al. [6] for the Gompertz process, Gutiérrez
et al [10] for the Vasicek process and by Nafidi et al. [9] for the Gamma process.

However, all of these prior studies took as their starting point the fact that exogenous fac-
tors, including temporal functions, affect drift (the first infinitesimal moment). The relation
between the diffusion coefficient (the second infinitesimal moment) and exogenous factors
has not been addressed in previous research. The present study considers this question in a
particular case of the stochastic lognormal diffusion process.

This paper, thus, discusses the theoretical aspects of a non-homogenous version of the
lognormal diffusion process, based on the fundamental fact that the diffusion coefficient is a
function of time. The paper is structured as follows: in the second section, from the corre-
sponding Ito’s stochastic differential equation, the following probabilistic characteristics of
the model are obtained: the explicit expression of the process, its transition probability den-
sity function (pdf), its statistical distribution and the moments of the process. In the final
section, we develop the statistical inference of this model, using maximum likelihood with
discrete sampling.

§2. The proposed model and its characteristics

2.1. The model and the pdf
The proposed model is a lognormal diffusion process with a time-dependent diffusion coef-
ficient. It is defined by the one-dimensional stochastic process {x(t); t ∈ [t0,T ]; t0 ≥ 0} that
satisfies Ito’s stochastic differential equation (SDE):

dx(t) = ax(t)dt + σg(t)x(t)dw(t) ; x(t0) = xt0 ,

where {w(t); t ∈ [t0,T ]} is a one-dimensional standard Wiener process, xt0 is a fixed real value
within (0,∞). The parameters a and σ are real and will be estimated, and the function g is
continuous and depends solely on the time.

The analytical expression of the process can be obtained by applying Ito’s formula to the
following type transform y(t) = log(x(t)). The following SDE is then obtained:

dy(t) =

(
a −

σ2g2(t)
2

)
dt + σg(t)dw(t) , y(t0) = log(xt0 ),

and by integrating, we have

y(t) = y(t0) +

∫ t

t0

(
a −

σ2g2(θ)
2

)
dθ + σ

∫ t

t0
g(θ)dw(θ) , y(t0) = log(xt0 ),

from which we can deduce the explicit expression of the process

x(t) = exp
{

log(xt0 ) + a(t − t0) −
σ2

2

∫ t

t0
g2(θ)dθ) + σ

∫ t

t0
g(θ)dw(θ)

}
.
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As the random variable
∫ t

s g(θ)dw(θ) has a one-dimensional normal distributionN1

(
0,

∫ t
s g

2(θ)dθ
)
,

we can deduce that the random variable x(t)/x(s) = xs ∼ Λ1

(
µ(s, t, xs), σ2ν2(s, t)

)
, a one-

dimensional log-normal distribution with

µ(s, t, x) = log(x) + a(t − s) −
σ2

2

∫ t

s
g2(θ)dθ,

ν2(s, t) =

∫ t

s
g2(θ)dθ.

The transition density function of this process f (y, t | x, s) takes the form

f (y, t | x, s) = (2πσ2ν2(s, t))−
1
2 x−1 exp

−
[
log(y) − µ(s, t, x)

]2

2σ2ν2(s, t)

 .
2.2. The trend functions

Using the following properties of the one-dimensional lognormal distribution:
if X ∼ Λ1

(
µ, σ2

)
, then

E(Xr) = exp
(
rµ +

r2σ2

2

)
,

the rth conditional moment of the process is given by

E (xr(t)/x(s) = xs) = exp
(
rµ(s, t, xs) +

r2σ2ν2(s, t)
2

)
= xr

s exp
(
ra(t − s) + r(r − 1)

σ2

2

∫ t

s
g2(θ)dθ

)
.

For r = 1, the conditional trend function is:

E (x(t)/x(s) = xs) = xs exp (a(t − s)) .

From this, and considering the initial condition P(x(t1) = xt1 ) = 1, the trend function leads us
to

E (x(t)) = xt1 exp (a(t − t1)) .

§3. Statistical inference on the model

3.1. Maximum likelihood parameter estimation

With discrete sampling, the parameters a and σ2 of the model are estimated by means of
maximum likelihood. Let us consider a discrete sampling of the process x(t1) = x1, x(t2) =
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x2, . . . , x(tn) = xn for times t1, t2, . . . , tn and the the initial distribution P [x(t1) = x1] = 1.
Then, the associated likelihood function can be obtained by the following expression:

L(x1, . . . , xn, a, σ2) =

n∏
j=2

f
(
x j, t j | x j−1, t j−1

)
.

An implementation based on the change of variable can be used in order to calculate the
maximum likelihood estimators in a simpler way. Consider the following transform: v1 = x1,
vi = ν−1

i (log(xi) − log(xi−1)), for i = 2, . . . , n. Then, given ξi = ν−1
i (ti − ti−1) and ρi = 1

2νi,
the log-likelihood function can be expressed as follows:

log(L) = −
n − 1

2
log(2π) −

n − 1
2

log(σ2) −
1

2σ2

n∑
j=2

(
v j − ξ ja + ρ jσ

2
)2
.

By differentiating the log-likelihood function with respect to a and σ2 and by equaling this
differential to zero, we obtain the following likelihood equations:

n∑
j=2

ξ j

(
v j − ξ jâ + ρ jσ̂

2
)

= 0,

−(n − 1)σ̂2 +

n∑
j=2

(
v j − ξ jâ + ρ jσ̂

2
)2
− 2σ̂2

n∑
j=2

ρ j

(
v j − ξ jâ + ρ jσ̂

2
)

= 0.

From the first of these equations, the likelihood estimator â can be expressed in terms of the
estimator σ̂2, as follows:

â = w + zσ̂2,

where

w =

 n∑
j=2

ξ jv j


 n∑

j=2

ξ2
j

−1

and z =

 n∑
j=2

ξ jρ j


 n∑

j=2

ξ2
j

−1

By substitution in the second likelihood equation, and after various algebraic operations (not
shown), we obtain the following second-degree equation in σ̂2 n∑

j=2

ρ2
j − z2

n∑
j=2

ξ2
j

 σ̂4 + (n − 1)σ̂2 −

n∑
j=2

(
v j − wξ j

)2
= 0. (1)

To solve this second-degree equation, we can distinguish two cases.

First case:
n∑

j=2

ρ2
j − z2

n∑
j=2

ξ2
j = 0.

The likelihood estimators of the parameters in this case are

σ̂2 =
1

n − 1

n∑
j=2

(
v j − wξ j

)2
,

â = w + zσ̂2.
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Remark 1. An example of this first case occurs when g(t) = 1. In this case, we obtain ξ j = ρ j

and z = 1
2 , and thus:

n∑
j=2

ρ2
j − z2

n∑
j=2

ξ2
j = 0,

and the resulting estimators are

â −
σ̂2

2
= w and σ̂2 =

1
n − 1

n∑
j=2

(
v j − wξ j

)2
.

These are precisely the estimators obtained by Al Eideh et al. [1] for the lognormal
process with no exogenous factors.

Second case:
n∑

j=2

ρ2
j − z2

n∑
j=2

ξ2
j , 0.

The discriminant of the equation Eq(1) in this case is:

∆ = (n − 1)2 + 4

 n∑
j=2

ρ2
j − z2

n∑
j=2

ξ2
j

 n∑
j=2

(
v j − wξ j

)2
.

To obtain the sign of this discriminant, we make use of the following result:
Proposition:

Let an and bn be two non-negative sequences. Then we have the following inequality: n∑
k=1

a2
k

  n∑
k=1

b2
k

 ≥  n∑
k=1

akbk

2

.

The proof of this is obtained by induction.
Using the above result in the particular case: ak = ρk and bk = ξk with 1 ≤ i ≤ n. Thus,

we have:  n∑
k=1

ρ2
j

  n∑
k=1

ξ2
j

 ≥  n∑
k=1

ρ jξ j

2

.

from which we obtain that
n∑

j=2

ρ2
j − z2

n∑
j=2

ξ2
j ≥ 0.

Then we deduce that
∆ > (n − 1)2,

and therefore the Eq(1) has two solutions, and the non-negative solution corresponding to σ2

is

σ̂2 =

√
∆ − (n − 1)

n∑
j=2

ρ2
j − z2

n∑
j=2

ξ2
j

.
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3.2. Estimated trend functions
By Zehna’s theorem [13], we can obtain the estimated trend function and the estimated con-
ditional trend function of the process, replacing the parameters by their estimators. The
estimated conditional trend function is then given by

Ê (x(t)/x(s) = xs) = xs exp (â(t − s)) = exp
[(
w + zσ̂2

)
(t − s)

]
,

and the estimated trend function is:

Ê (x(t)) = xt1 exp (â(t − t1)) = xt1 exp
[(
w + zσ̂2

)
(t − t1)

]
.

References

[1] Al Eideh, B. M., Al Refai, A. S. A., and Sbeiti, W. M. Modelling the cpi using a
lognormal diffusion process and implications on forecasting inflation. IMAA Journal of
Management Mathematics 15 (2004), 39–51.

[2] Albano, G., andGiorno, G. A stochastic model in tumor growth. Journal of Theoretical
Biology 242 (2006), 329–336.

[3] Ferrante, L., Bompade, S., Leone., L., andMontanari, M. A stochastic formulation of
the gompertzian growth model for in vitro bactericidal kinetics: parameter estimation
and extinction probability. Biometrical Journal 47, 3 (2005), 309–318.

[4] Ferrante, L., Bompade, S., Possati, L., and Leone., L. Parameter estimation in a gom-
pertzian stochastic model for tumor growth. Biometrics 56 (2000), 1076–1081.

[5] Giovani, A. N., and Skiadas, C. H. A stochastic logistic innovation diffusion model
studying the electricity consumption in greece and the united states. Technological
Forecasting and Social Change 61 (1999), 253–264.

[6] Gutiérrez, R., Gutiérrez-Sánchez, R., and Nafidi, A. Electricity consumption in mo-
rocco: stochastic gompertz exogenous factors diffusion analysis. Appl. Energ., 83
(2006), 1139–1151.

[7] Gutiérrez, R., Gutiérrez-Sánchez, R., and Nafidi, A. Statistical inference in the
stochastic gamma diffusion process with external information. Monografías del Semi-
nario Matemático GarcÃŋa de Galdeano, 35 (2010), 263– 270.

[8] Gutiérrez, R., Rico, N., Román, P., , and Torres, F. Approximate and generalized
confidence bands for the mean and mode functions of the lognormal diffusion process.
Computational Statistics and Data Analysis, 51 (2007), 4038–4053.

[9] Nafidi, A., Gutiérrez, R., Gutiérrez Sánchez, R., Ramos-Abalos, E., and El Hachimi,
S. Modelling and predicting electricity consumption in spain using the stochastic
gamma diffusion process with exogenous factors. Energy 15 (2016), 309–318.

[10] R. Gutiérrez, R., Gutiérrez-Sánchez, R., Nafidi, A., and Pascual, A. Detection, mod-
elling and estimation of non-linear trends by using a non-homogeneous vasicek stochas-
tic diffusion. application to co2 emissions in morocco. Stoch. Environ. Res. Risk Assess.
26 (2012), 533–543.



A new lognormal diffusion process with exogenous factors in the diffusion coefficient 137

[11] Skiadas, C., and Giovani, A. A stochastic bass innovation diffusion model for studying
the growth of electricity consumption in greece. Applied Stochastic Models and Data
Analysis 13 (1997), 85–101.

[12] Tintner, G., and Sengupta, J. K. Stochastic Economics. Academic Press, 1972.

[13] Zehna, P. W. Invariance of maximum likelihood estimators. Ann. Math. Stat. 37 (1966),
744.

Ahmed Nafidi
Laboratoire LAMSAD, Ecole Supérieure de Technologie
Univ Hassan 1
Avenue de l’université, BP 218
26100 Berrechid, Morocco
nafidi@hotmail.com

Ramón Gutiérrez- Sánchez
Department of Statistics and Operational
Research, Faculty of Sciences
University of Granada
Campus de Fuentenueva 18071 Granada, Spain
ramongs@ugr.es




