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NUMERICAL APPROXIMATION OF
SINGULARLY PERTURBED

REACTION-DIFFUSION PROBLEMS WITH
THE VIRTUAL ELEMENT METHOD

José Luis Gracia and Diego Irisarri
Abstract. In this paper we approximate 2D reaction-diffusion elliptic singularly per-
turbed problems with the virtual element method. This method is combined with the
link-cutting technique in order to obtain a stable solution but it is only accurate outside
the layer regions. We use a post-processing technique to approximate the solution in the
layer regions. Numerical results show the robustness of the method with respect to the
diffusion parameter if a suitable graded mesh is used in the layer regions.
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§1. Introduction

Singular perturbation problems arise in many practical applications. The solution of these
problems exhibits a multi-scale character and, therefore, classical numerical methods fail to
obtain accurate approximations to the solution, unless a very fine (which depends adversely
on the singular perturbation parameter) mesh is considered. Finite difference and finite ele-
ment methods have been used in the literature to approximate singularly perturbed problems
(see [14] and the references therein) but up to our knowledge, except in [12], the virtual ele-
ment method (VEM) has not been used yet in the literature for its numerical approximation.

In this paper we use VEM to approximate the solution of singularly perturbed problems
of reaction-diffusion type. This method arises from the mimetic difference methods but it is
formulated in the framework of the finite element method (FEM). In fact, it can be considered
as a generalization of the FEM. For a general overview we refer to [2, 5] and this method has
been applied both to linear elasticity problems [4, 8] and fluid mechanics [3, 6], for instance.

In [12], using the flexibility of the VEM meshes, a methodology was developed to ob-
tain a stable solution modifying the mesh via the link-cutting condition. This method damps
out the spurious oscillations and provides an accurate solution in the whole domain except
inside the layers regions if one uses a coarse triangulation compared to the singular pertur-
bation parameter ε. In this paper we propose to use a post-processing technique to improve
the solution in the layer regions and it can be viewed as a variant of the Schwartz iterative
technique. With this aim, we solve the problem in a subdomain of thickness O(

√
ε) which

overlaps the layer regions and whose boundary conditions are appropriately defined. We refer
to this problem in this paper as the local problem. In spite of solving in the layer regions,
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the numerical results suggest that the method is uniformly convergent in the maximum norm
if a graded mesh is used to approximate the local problem. Extensive numerical results on
polygonal domains have been performed in [13] but here, for the sake of clarity, we describe
our method for reaction-diffusion problems in a rectangular domain.

§2. Virtual element method discretization

Consider the following two-dimensional Dirichlet boundary value reaction-diffusion problem{
−ε∆u + b(x, y)u = f (x, y), for (x, y) ∈ Ω,

u = 0 on Γ,
(1)

where Ω is a polygonal domain in R2 with boundary Γ. We assume that the reaction term
satisfies b(x, y) ≥ β > 0 for (x, y) ∈ Ω̄, b and f are sufficiently smooth functions and 0 < ε ≤
1. The coefficient ε is called the singular perturbation parameter.

The variational formulation of problem (1) reads: Find u ∈ V = H1
0(Ω) such that

B(u, v) = ( f , v), ∀v ∈ V, (2)

where
B(u, v) = a(u, v) + c(u, v), (3)

and

a(u, v) =
∫

Ω
ε∇u · ∇v, c(u, v) =

∫
Ω

b u v, ( f , v) =

∫
Ω

f v. (4)

A detailed discussion on the discretization of the variational problem (2) with the VEM can
be found in [3]. We only give a brief description of the basic features of this method below.

The domain Ω is first decomposed into a partition Ph composed of polygons K, and let
Eh be the set of edges e of Ph. We consider on each element K the following space for linear
elements

Ṽh(K) =
{
v ∈ H1(K) : v|e ∈ P1(e) ∀ e ⊂ ∂K,∆v ∈ P1(K)

}
.

This is the space of the functions that are linear on each edge and hence they are completely
determined by their values at the vertices of K. Inside Ṽh(K), the functions are harmonic and
its total dimension is equal to the number of vertices of K. For higher order elements, the
degrees of freedom are different [3].

A crucial ingredient in the construction of a suitable local stiffness matrix (ensuring con-
sistency and stability) is the projection operator Π∇1 : Ṽh(K) → P1(K), defined, for every
v ∈ Ṽh(K), as the solution of∫

K
∇(Π∇1 v − v) · ∇p = 0, ∀p ∈ P1(K) and

∫
∂K

(Π∇1 v − v) = 0, (5)

and therefore the polynomial Π∇1 v can be computed using the degrees of freedom (i.e., the
values of v at the vertices of K).
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We now introduce the local virtual element space for linear elements

Vh(K) =

{
v ∈ Ṽh(K) :

∫
K
v p =

∫
K

Π∇1 v p, ∀p ∈ P1(K)
}
. (6)

The global finite dimensional virtual element space is then defined as

Vh =
{
v ∈ V : v|K ∈ Vh(K) ∀K ∈ Ph

}
. (7)

We denote by Π0
k the L2-projection from Vh onto Pk, defined locally as∫

K
(v − Π0

kv) pk = 0 ∀pk ∈ Pk(K). (8)

The bilinear form expressed in (4) can be discretized as the sum of the bilinear forms
restricted to the elements. Therefore, for all u, v ∈ Vh

Bh(u, v) = ah(u, v) + ch(u, v), (9)

with
ah(u, v) =

∑
K∈Ph

aK
h (u, v), ch(u, v) =

∑
K∈Ph

cK
h (u, v), (10)

the elemental bilinear forms are given by

aK
h (u, v) =

∫
K
ε[Π0

0∇u] · [Π0
0∇v] + S K

ε ((I − Π∇1 )u, (I − Π∇1 )v),

cK
h (u, v) =

∫
K

b[Π0
1u][Π0

1v] + S K
b ((I − Π0

1)u, (I − Π0
1)v),

(11)

and the terms S K
ε (·, ·) and S K

b (·, ·) are defined in (14). The right-hand side of (2) is approxi-
mated by

( fh, vh) =
∑
K∈Ph

( fh, vh)K =
∑
K∈Ph

∫
K

Π0
1 f vh. (12)

As we have considered linear elements, the degrees of freedom, dofi(·), are the values of
vh at the vertex i for i = 1, . . . , n where n is the number of vertices of Ph. The basis functions
ϕi ∈ Vh are defined as the canonical basis functions, and they satisfy

dofi(ϕ j) = δi j, i, j = 1, ..., n. (13)

Thus,

vh =

n∑
i=1

dofi(vh)ϕi vh ∈ Vh .

The terms S K
ε (·, ·) and S K

b (·, ·) in (11) guarantee the stability of the method. They are
given by [5]

S K
ε ((I − Π∇k )ϕi, (I − Π∇k )ϕ j) = ε[(I − Π∇k )T (I − Π∇k )]i j , (14a)

S K
b ((I − Π∇k )ϕi, (I − Π∇k )ϕ j) = b|K|[(I − Π0

1)T (I − Π0
1)]i j . (14b)
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Then, the discrete problem can be written as{
Find uh ∈ Vh such that
Bh(uh, vh) = ( fh, vh) ∀vh ∈ Vh

(15)

§3. Numerical methodology

The numerical approximation that we propose in this paper is obtained in two steps. Firstly, a
stable solution is obtained by using the VEM described in Section 2 together with the concept
of the link-cutting condition. It consists in modifying the mesh such as a stabilized numerical
solution is obtained; nevertheless it is an accurate approximation to the problem (1) in the
whole domain except in the layer regions. In the second step, we solve a local problem in the
layer regions where the values of the boundary conditions are defined by using the solution
computed in the previous step. Finally, both solutions are merged. This technique is usually
called global/local or zooming methods.

3.1. Step 1: Numerical solution using VEM and link-cutting condition

Following the link-cutting concept [7, 12], we have obtained stable solutions with the VEM
by removing the interaction between the basis functions associated with the vertices on the
boundary of the domain and the neighbouring basis functions. We give a brief description of
this condition: Let ΥB denote the set of degrees of freedom belonging to the boundary of the
domain. Then, the link-cutting condition can be formulated as:∑

m∈ΥB

Bh(ϕn, ϕm) = 0 ∀n < ΥB , (16)

where recall that ϕn are the basis functions of the space Vh(K).
A way of fulfilling (16) is introducing a row of quadrilaterals on the boundary layer

regions with a suitable width, which is called the link-cutting distance [12] and it is denoted
by σLC (see Figure 1). For example, the link-cutting condition for the vertex n depicted in
Figure 1 would be

Bh(ϕn, ϕm1) + Bh(ϕn, ϕm2) + Bh(ϕn, ϕm3) = 0. (17)

In the case of a constant coefficient problem with b(x, y) ≡ b, the link-condition distance
for the reaction-diffusion problem is given by

σLC =

√
6ε
b
,

and (16) is satisfied exactly. In the case of a variable coefficient problem, we take the link-
cutting distance as the natural extension

σLC =

√
6ε

minΓ(b)
. (18)
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Figure 1: Mesh modification on the boundary layer.

It is worth noting that the value σLC depends on the data problem but it is irrespective of the
length of the quadrilaterals.

The VEM has the advantage with respect to FEM that different type of elements can be
used. This peculiarity is very important here because the former computational mesh has
been modified with the row of quadrilaterals without taking into account how it affects to the
number of vertices of the neighbouring elements.

3.2. Step 2: The post-processing technique and the local problem in the
layer regions

The numerical solution computed in the first step provides an accurate approximation to the
problem (1) in the outer region but not in the inner region. Thus, the objective of this step is
to improve the approximation in the inner region. With this aim, we solve a local problem in
the layer regions and the values of the boundary conditions are obtained from the numerical
solution computed in the previous step. Once the solutions of the first and second steps
are obtained, they are patched to have the final approximation to the solution in the whole
domain.

§4. Numerical results

For the sake of clarity, we show our methodology for a test problem defined on the unit
square. We have obtained similar results for other polygonal domains [13].

In the case of a rectangular domain, it is well known that the solution exhibits, in general,
a boundary layer of order of O(

√
ε) on each side of the domain and four corner layers in the

neighbourhood of the corners of the domain (see [10] for further details in the behaviour of
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the solution). We consider a particular example [9] of (1) with the following coefficients

−ε∆u + (1 + (1 − x)2(1 − y)2)u = 1 + 2(1 − x)(1 − y), in Ω = (0, 1) × (0, 1), (19a)

u(x, 0) = 2x − x2, u(x, 1) = 1, x ∈ [0, 1], (19b)

u(0, y) = 2y − y2, u(1, y) = 1, y ∈ [0, 1]. (19c)

The boundary conditions have been chosen such that the solution of the problem (19) only
has two boundary layers in the vicinity of x = 0 and y = 0 and a corner layer at the vertex
(0, 0). We refer to [11] concerning the regularity of the solution u. This test problem satis-
fies the compatibility conditions of zero level at the four corners of the domain but not the
compatibility condition of first level at (0, 0) since

4ε = −εuxx(0, 0) − εuyy(0, 0) + b(0, 0)u(0, 0) , f (0, 0) = 3.

Nonetheless, u ∈ C1,α(Ω̄) (it denotes the Hölder function space of exponent α) and spite of
this lack of regularity, we approximate the solution with the scheme given in Section 3.

Step 1: We first define a decomposition PN of the domain Ω into square elements. We
denote by N the number of elements in each direction. The initial partition of the domain is
then modified using the link-cutting technique described in Section 3.1; observe that only the
elements with an edge lying on the part of the boundary

Γo = {(x, 0), x ∈ [0, 1]} ∪ {(0, y), y ∈ [0, 1]} ,

are modified. The link-cutting distance for the reaction-diffusion test problem (19) is given
by σLC =

√
6ε as minΓ(b) = 1. The final rectangular mesh is denoted by PLC

N . In Figure 2
both the initial mesh PN and the final mesh PLC

N are displayed for ε = 10−4 and N = 16.
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(a) Initial mesh, PN
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(b) Modified mesh, PLC
N

Figure 2: Test problem (19) with ε = 10−4: Initial and modified meshes via link-cutting
technique for N = 16.

In Figure 3, we show the computed solutions with the VEM. In the left figure, the link-
cutting technique is not used and then the numerical solution is obtained in the computational
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mesh PN . We observe that this solution exhibits spurious oscillations in a similar way to the
standard FEM if one does not apply the lumping technique to the mass matrix. On the other
hand, if one uses the link-cutting technique a non-oscillatory solution uLC

N is obtained in the
computational mesh PLC

N as it is observed in the right figure. Note that in the mesh PLC
N , the

first interior mesh is located to a fixed distance (independent of the discretization parameter
N) of the boundary Γo and then the approximation uLC

N would not be improved although the
mesh is refined. In the next step we deal with this drawback by solving a local problem.
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(b) Solution with link-cutting technique

Figure 3: Test problem (19) with ε = 10−4: Computed solution with VEM without and with
the use of the link-cutting technique for N = 16.

Step 2: We shall use the following notation

Ω̄L,p = {(x, y) ∈ Ω, 0 ≤ x ≤ p, 0 ≤ y ≤ 1} ∪ {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ p},

with p a positive real number to define some L-shaped subdomains of Ω.

To improve the crude approximation uLC
N of the previous step in the layer region Ω̄L,σLC ,

we use the post-processing technique described in Section 3.2. We recall that this technique
is based on solving the partial differential equation (19a) posed on an L-shape subdomain
Ω̄L,p with p > σLC . Thus, Ω̄L,σLC ⊂ Ω̄L,p. We have observed in our numerical experiences
that the choice of p is not very relevant when applying this post-processing technique and we
fix the value of p to be p = 4σLC in this paper.

The values of the solution on the part of the boundary ΓL,o = Γ ∩ ∂ΩL,4σLC are given
in (19b) and (19c); the values of the solution on ΓL,i = ∂ΩL,4σLC\ΓL,o are obtained using the
approximation uLC

N from the first step and bilinear interpolation.
The solution of this problem is approximated with the VEM (it is not necessary now

to apply the link-cutting technique) and we use a piecewise uniform mesh for both spatial
variables. This mesh is defined as follows: The interval [0, 1] is split into two subintervals
[0, 4σLC] and [4σLC , 1] and N/2 grid points are uniformly distributed within each subinterval.
The final 2D mesh is the tensor product of both meshes (see Figure 4a) and it is denoted by
Ω̄N

L,4σLC
. If we denote by zN the computed solution in the second step, then we propose the

following approximation to the solution of the test problem (19)

uN =

uLC
N , on PLC

N \Ω̄
N
L,4σLC

,

zN , on Ω̄N
L,4σLC

.
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(a) Piecewise uniform mesh
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(b) Piecewise graded mesh

Figure 4: Mesh in the L-shaped domain Ω̄L,4σLC .

We now give some information about the accuracy of the solution computed with our
algorithm. The solution of the problem (19) is unknown and the orders of convergence are
estimated using the two-mesh principle [10]: the finer mesh uses the grid points of the coarser
mesh and their midpoints in both space variables. We denote the maximum two-mesh differ-
ences by

EN = max
{
e1

N , e
2
N

}
,

where e1
N and e2

N are the maximum two-mesh differences in the outer and inner regions

e1
N = max

PLC
N \Ω̄

N
L,4σLC

∣∣∣uLC
N − uLC

2N

∣∣∣ , e2
N = max

Ω̄N
L,4σLC

|zN − z2N | .

Then, the orders of convergence are estimated in the usual way QN = log2(EN/E2N).
Note that we use the maximum norm to estimate the errors which is the appropriate norm

when one considers singularly perturbed problems; we refer to [10] for a further discussion.
The numerical results are given in Table 1; observe that the maximum two-mesh differ-

ences (first row for each value of ε) are bigger for the smaller value of ε and it suggests that
the method could not be uniformly convergent. In addition, for ε fixed, the orders of conver-
gence (second row for each value of ε) are not satisfactory either since one would expect to
obtain (almost) second order of convergence. To improve these numerical results, we use a

Table 1: Post-processing technique using a uniform mesh: Maximum two-mesh differences
EN and orders of convergence QN for the test problem (19).

N=24 N=48 N=96 N=192

ε = 10−5 4.901E-2 9.776E-3 2.831E-3 9.258E-4
2.326 1.788 1.613

ε = 10−7 4.931E-2 1.236E-2 3.572E-3 1.418E-3
1.996 1.791 1.333

ε = 10−9 4.934E-2 1.361E-2 3.773E-3 1.584E-3
1.858 1.851 1.252
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graded mesh in the layer region Ω̄L,4σLC when the post-processing technique is applied. This
type of meshes were applied in [1] to solve a singularly perturbed problem in an L-shaped
domain. We also propose here to use a graded mesh, which is defined by

xi = yi = 4σLC

[
1 −

(
N − 2i

N

)r]
, for i = 0, 1, . . . ,N/2,

xi = yi = 4σLC + (1 − 4σLC)
(

2i − N
N

)r

, for i = N/2 + 1, . . . ,N,

where r ≥ 1 is the grading exponent. Thus, this mesh concentrates the elements at the corner
(4σLC , 4σLC) and the final mesh for r = 2 is depicted in Figure 4b.

The numerical results of our scheme on the graded mesh for the choice of the grading
exponent r = 2 are given in Table 2 and we observe an improvement compared to Table 1
where a uniform mesh was considered. Namely, the maximum two-mesh differences are
stabilished as ε tends to zero and the computed orders of convergence suggest that the scheme
is second order convergent. Similar numerical results have been obtained for other choices
of the grading exponent with r > 2.

Table 2: Post-processing technique using a graded mesh: Maximum two-mesh differences
EN and orders of convergence QN for the test problem (19).

N=24 N=48 N=96 N=192

ε = 10−5 1.865E-1 4.585E-2 9.267E-3 2.129E-3
2.024 2.307 2.122

ε = 10−7 1.882E-1 4.612E-2 9.297E-3 2.143E-3
2.029 2.311 2.117

ε ≤ 10−9 1.882E-1 4.616E-2 9.299E-3 2.144E-3
2.029 2.311 2.117
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