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STABILITY RESULTS FOR NEMATIC
LIQUID CRYSTALS

Haroldo Rodrigues Clark, Marfa Angeles Rodriguez-Bellido
and Marko A. Rojas-Medar

Abstract. In 1994, Ponce et al. analyzed ([11]) the stability of mildly decaying global
strong solutions for the Navier-Stokes equations. In this work, we try to apply the same
approach for a nematic liquid crystal model, that is a coupled model including a Navier-
Stokes type-system for the velocity of the liquid crystal (“liquid part”) and a parabolic
system for the orientation vector field for the molecules of the liquid crystal (“solid part”).
We will focus on the similarities and differences with respect to [11], depending on the
boundary data chosen for the solid part.
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§1. The model

Liquid crystals are intermediate state of matter (between liquid and solid state), whose ap-
plications in physical and technical devices has been fashionable for decades. The modeling
of nematic liquid crystals is therefore very interesting for a mathematical point of view in
order to reproduce the physical properties of their molecules, specially the refraction of the
light. As a consequence, different systems of equations can be found in the literature, most
of them including a macroscopic part (equations for the fluid containing the molecules if the
liquid crystal) and a microscopic part (equations for the behavior of the molecules of liquid
crystals). However, the mathematical analysis is not easy, taking into account that these mod-
els contain the Navier-Stokes equations (for the velocity of the fluid) inside, whose external
force is now a term depending of the new variable describing the molecules of liquid crystals,
and that new variable satisfies its own equation.

Therefore, questions asked for the Navier-Stokes equations can now be asked for these
liquid crystals models. Actually, we want to know if the asymptotic stability analyzed in the
paper of Ponce et al. (cf. [11]) can be generalized for some liquid crystal model.

In a first attempt, we focus on the model studied by Lin et al. (cf. [8]): If we denote
by v = v(z,x) the velocity vector, p(t,x) the pressure of the fluid, e(z,x) the orientation of
the liquid crystal molecules, and x = (x1, X, x3) € Q a bounded domain (whose boundary is
denoted by 0Q) then the model for the phenomenon in 3D of liquid crystals of nematic type
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can be described, for example, by coupled system:

Ov—vAV+ (v-V)v+Vg=-A(Ve))Ae+g in (0,T)XQ,

V-v=0 in (0,T)xQ,
oe—y(Ae—f5(e))+(v-V)e=0 in (0,7T)xQ, (1)
v=0, d,e=0 on (0,7)x0Q,

v(x,0) = vop(x), e(x,0) =ep(x) in Q,

where v > 0 is the fluid viscosity, 4 > 0 is the elasticity constant, y > 0 is a relaxation in time
constant, the function f; is defined by

1 .
f(e) = §(|e|2— e with |e[ <1, 2)

where | - | is the euclidian norm in R?, § > 0 is a penalization parameter, and g is a known
function defined in (0, T') x Q.

For more details about the penalization function fs(e) we recommend to readers, the fol-
lowing references (cf. [7], Lin & Liu [8]) and Guillén-Gonzalez et al (cf. [6]). Here, all those
derivatives in problem (1) are in the sense of the distributions of Schwartz (see, L. Schwartz
[12]).

Note that system (1) is a simplified model, where the terms modeling the stretching effect
(for example) are not contained (see [13] for a more general model). On the other hand, if
a tensor variable Q is used to analyze the molecular behavior instead of the director field e,
some other more complex Q-tensor models appear (see [10, 9, 5, 3, 4]).

§2. Spaces framework and regularity definitions and results

We will use V and H the Lebesgue-Sobolev spaces of type H'(Q), H}(€) and L*(Q) asso-
ciated with the incompressibility and adherence velocity conditions (as usual in the Navier-
Stokes framework), given by

V={yeH'(@Q);V-y=0,ur=0}, H={yeL*Q);V-y=0,u-ny =0}

We deal with two different notions of solution for the Navier-Stokes equations and system
(1). Namely,
Definition 1. We call
o a weak solution for the Navier-Stokes equations in (0, T') to a function v satisfying the
variational formulation for these equations and with the following regularity:

v e L*(0,T;H) N L*0,T;V), 3)

e a weak solution for (1) in (0, T) to a pair (v, e) satisfying the variational formulation
for (1), where v satisfies (3) and e has the following regularity:

ec L°(0,T;H'(Q) N L*0, T; H*(Q)). 4)
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Definition 2. We call

e a strong solution for the Navier-Stokes equations in (0, T') to a function v satisfying the
variational formulation for these equations and with the following regularity:

ve L0, T;HNnH'(Q) N L*0,T;H*(Q) N V), 5)

e a strong solution for (1) in (0, T') to a pair (v, e) satisfying the variational formulation
for (1), where v satisfies (5) and e has the following regularity:

e c L0, T; H*(Q)) N L*(0, T; H3(Q)). (6)

The existence of global in time weak solution for (1), that is a weak solution in (0, T)
for any given 7 < +oo, in the case of Dirichlet boundary conditions for e (el = h in-
stead of dyelz = 0) has been treated in the work of Lin et al. (cf. [8]) for the case of time-
independent Dirichlet boundary data, and the time-dependent case and the strong regularity
of time-periodic solutions were studied by Climent et al. (cf. [2]). In all cases, the following
compatibility hypothesis were considered:

legl <1 a.e.inQ, Jh/ <1 a.e. inZ, 7

and (among others) vo € H and ey € H'(Q). On the other hand, under the hypothesis of
strong regularity for the data vy € V, ey € H?(Q) it is known the existence and uniqueness of
strong solution under some restrictions:

e global in time for big enough viscosity (v >> 1),

e local in time (the strong solution is defined in (0, 7*), being T, < T small enough) for
any data.

For the analysis of stability results it is necessary to start from a solution defined in
(0, 4+0c0). Considering homogeneous Neumann boundary conditions for e (dyelz = 0), it
is possible to prove the existence of a global weak solution (v, e) in (0, +oo) for any data
(v, €0, 8) € Hx H'(Q) x L*(0, +00; L?(Q)), that is:

v e L*(0, +c0; H) N L*(0, +00; V),

(®)
e € L°(0, +o0o; H'(Q)) N L2(0, +c0; HX(Q)).

Remark 1. For either non-homogeneous Dirichlet or homogeneous Neumann boundary con-
ditions for e, it is possible to prove that (see, for instance, Appendix A in [6] for a proof):

ec L™((0,+00) X Q) )
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§3. Stability result for (1)

The result of stability that we present is a generalization of a result stablished by Ponce et
al. (cf. [11]), made for the classical Navier-Stokes equations. Our stability results for system
(1) can be stated as follows:

Theorem 1. Suppose that there exists a global strong solution (v, q, €) of system (1) with the
regularity

ve Ly (0,+00;V)N LIZOC(O, +00; D(A)),
(10)
ec L;’;’C(O, +00; HZ(Q)) N leoc(O, +00; H3(Q)),
and that satisfies the Leray global criterion of regularity
Vvt and (IVe®lly,, @ belong o L0, ). (11)
Assume ug € V, dy € HX(Q) and Pk € LZ(O, oo; H), being P is the Helmholtz projector
2 L@
P:L°(Q —->H={velL?(Q):V-v=0} . (12)
There exists a 6 > 0 such that if (ug, do, K) satisfies:
IV(ao — vo)ll + lldo — eollz2) + f 1Pk — g)()IPdt < & (13)
0

then there exists a unique global strong solution (u, p, d) of system (1) with data (uy, dy, PK).
Moreover, there exists C = C(6) with C(6) — 0 as 6 — 0 such that

sug (IV(u(®) = v(O)ll + SU(I)) Id(®) — eDll2(r) < C(O). (14)

Note that several results are proven: the global regularity in time for the strong solution
(v, e), that is, the “loc" character in (10) can be removed; the uniqueness of solution for
system (1) and that solution (u, d) is also a global in time strong solution near (v, e) along
(0, +o0).

3.1. Scketch of the proof of Theorem 1

Here we focus on the obtention of (14). The detailed proof of this asymptotic result together
with the uniqueness of the global strong solution (u, p, d) can be found in [1].

We consider the perturbation (u, p, d) which satisfies the system

ou—vAu+m-Viu+Vp=-AVd)Ad+k in (0,T)xQ,
V-u=0 in (0,T)xQ,
od—-y(Ad—-fs(d)+(m-V)d=0 in (0,7)%xQ, (15)
u=0, d,d=0 on (0,7)x09Q,
ux,0) =up(x), dx,0)=dp(x) in Q,
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that it is a global in time weak solution, even in (0, +o0). Therefore, denoting by A = —PA
the Stokes operator with domain

D(A) = VNH*(Q), V=H\Q) NH,

where P is the Helmholtz projector defined in (12), we want to analyze the behavior of
(w,z) := (v —u, e —d), which satisfies:

0w+ vAW = —P[(Vv- V)W + (W - V)v — (W - V)wW]
—AP[(Ve)'Az + (Vz)'Ae — (Vz)'Az] + P(g — k)

—_

in (0,7)xQ,

V-.w=0 in (0,7T)xQ,
01z — yAz = —y[fs(e) —fs(e —z2)] - [(V-V)z+(W-V)e—(w-V)z] in (0,T)xQ,
w=0, dhz=0 on (0,7)x0Q,
w(x,0) = wo(x), z(x,0)=1zp(x) in Q.

[

(16)
First, we take z as test function in (16)3, we obtain:
d 5
el + v izl g + 572 12l < Cesiy 2 + £lIVWIP a7

because Ve € L®(0, +00; L?(Q)) thanks to (8) for T = +c0. Then, we take (w, —1 Az) as test
function in (16), obtaining:

d
— (WP + 2092?) -+ v IVWIE +y AllAzP < € (IVVIF + 1Ael) (1wl + 21V2P)

+  Clig=hllg, o + ClIVZP + &11IV2l;

(e H'(Q)

(18)
Note that € and g; are small parameters, which will be defined later in order to control the
terms containing & and &; on the right hand side of (20) with the terms appearing on the left
hand side of (20); and C, ., denote different constants, increasing (up to +o0) when ¢, &; | 0.

An finally, we test (16) with (Aw, A’z), obtaining:

d
- (VWP +182) + (7 = 11e) AWIE + (v = 10e1) [V(An)IP

< Cey (VW + 1zl IVWIP + 11211, ) (19
+Cop, (IVVI* + 1€l ) + 1) (IVWIP + 2], )

+Co, 121 + Cosy IP@ = WIP + & 12l o

Observe that the bound for the term V([fs(e) — fs(e — z)]), V(Az)) can be made as follows:
Since e has the regularity of (8),, (9) and fs(e) = % (Iel2 - l)e, the mapping

W L0, 00; H' (Q)NL*(0, 003 HA(Q))NLZ((0, 00)xQ) — L(0, 00; LA(Q))NL(0, 00; H (Q))
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given by:
P(e) = Vis(e) = 5% (e = 1) Ve + 2(e - Ve)e|

is well defined. Observe that
1
¥ (eh) = = (2(e -h) Ve + (|e|2 - 1) Vh+2(h-Ve)e+2(e-Vhye+2(e- Ve)h)

Therefore, as Y(e) — V(e — z) = 0'¥(&,z), being 6P (€, z) the Gateaux derivative of ¥ in the
direction z, and at the point € defined as & = fe + (1 — 6)(e — z), 8 € (0,1) (i.e., & is any
element of the convex line [e, e — z]), we have:

(@) - ¥ -l < [I6%@ DIl < Cs (IVelllzlly)’ g, llzll 5, + 1V21])

Therefore, we can deduce that:

(V[fse) —fs(e = 2)], V(Az)) < &llV(A)|* + Ceys ||Z||§,2(Q)
because of ||[V&|| < C due to z, e € L®(0, +o0o; H'(Q)) and because of e —z = d € L®(Q)
thanks to (9).

Adding (17), (18) and (19), and choosing adequate small parameters &, €; (and their
correspondent constants C, C, ., ), we obtain:
K@+ H@ < Crh@) +C (INVOIF + Vel o) + ROz g, + 1) A0 o0
+ ClP@g-kOI?

for
) = [IVw@I? + ﬁIIZ(t)Ilil(Q) + 1Azt
H(@t) = YIVWOIP + [AWOI* + A (IIZ(I)IIf,l(Q) + IIAZ(t)IIZ) +yIV(Az(D)I

where C (henceforward) is a generic positive constant depending on initial data and smooth-
ness of set I'. Observe that |[€(t)||12le @ € L'(0, +00) thanks to the global in time weak regularity
(8).

Due to the structure of A(7) and H(?), it is evident that (for a constant C):

Ch(t) < H(t)
Therefore, if £ := C min{y, v} > 0 and ¢(¢) := ||Vv(®)|[* + ||Ve(t)||‘;]l(g) + [e(0)|1? ) then
(20) becomes
W (©) + Ch(e) < Co(Dh(t) + Ch(t) + CH3 (1) + C||P(g - K)||%. 21

Note that & > /? if and only if 7 < 1. In this case we would have directly that 2z would be

uniformly bounded on whole interval [0, o). Thus, we must have to work the case B >hin
(21), and thus
W (1) + {h(t) < Co(Dh(r) + Ch3(t) + Cl|P(g — K)DII*. (22)
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In this point, we employ some similar arguments as in Ponce at al. (cf. [11]).

1/2
Due to (13), h(0) < 8. We claim that A(f) < (é) for any ¢ € [0, o). Indeed, we argue
by contradiction: Assume that:

172
there exists a r* such that h(t") = (%) (23)

1/2
and A(s) < (%) for 0 < s < ¢*. Therefore, for any 7 € [0, ]

n)+ gh(t) < Co()h(®) + CIIP(g - WO,

15
We denote ®(¢) = C f ¢(s)ds and it is easy to obtain:
0

h(t) < *® (h(O) +Ce s f e I1P(g - K)(s)I? ds) 24)
0

Using (13), if we define ¢ as follows:

1 2
S N T @
2 max {1, e®+} \2C
then we obtain that:
12\
o< ; (%) for any £ € [0, #]. (26)
72
In particular, A(t*) < 3 (2—) , which contradicts (23). Observe that the argument is still
true for any ¢* € [0, oo].
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