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STABILITY RESULTS FOR NEMATIC
LIQUID CRYSTALS

Haroldo Rodrigues Clark, María Ángeles Rodríguez-Bellido
and Marko A. Rojas-Medar

Abstract. In 1994, Ponce et al. analyzed ([11]) the stability of mildly decaying global
strong solutions for the Navier-Stokes equations. In this work, we try to apply the same
approach for a nematic liquid crystal model, that is a coupled model including a Navier-
Stokes type-system for the velocity of the liquid crystal (“liquid part”) and a parabolic
system for the orientation vector field for the molecules of the liquid crystal (“solid part”).
We will focus on the similarities and differences with respect to [11], depending on the
boundary data chosen for the solid part.
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§1. The model

Liquid crystals are intermediate state of matter (between liquid and solid state), whose ap-
plications in physical and technical devices has been fashionable for decades. The modeling
of nematic liquid crystals is therefore very interesting for a mathematical point of view in
order to reproduce the physical properties of their molecules, specially the refraction of the
light. As a consequence, different systems of equations can be found in the literature, most
of them including a macroscopic part (equations for the fluid containing the molecules if the
liquid crystal) and a microscopic part (equations for the behavior of the molecules of liquid
crystals). However, the mathematical analysis is not easy, taking into account that these mod-
els contain the Navier-Stokes equations (for the velocity of the fluid) inside, whose external
force is now a term depending of the new variable describing the molecules of liquid crystals,
and that new variable satisfies its own equation.

Therefore, questions asked for the Navier-Stokes equations can now be asked for these
liquid crystals models. Actually, we want to know if the asymptotic stability analyzed in the
paper of Ponce et al. (cf. [11]) can be generalized for some liquid crystal model.

In a first attempt, we focus on the model studied by Lin et al. (cf. [8]): If we denote
by v = v(t, x) the velocity vector, p(t, x) the pressure of the fluid, e(t, x) the orientation of
the liquid crystal molecules, and x = (x1, x2, x3) ∈ Ω a bounded domain (whose boundary is
denoted by ∂Ω) then the model for the phenomenon in 3D of liquid crystals of nematic type
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can be described, for example, by coupled system:

∂tv − ν∆v + (v · ∇)v + ∇q = −λ(∇e)t∆e + g in (0,T ) ×Ω,

∇ · v = 0 in (0,T ) ×Ω,

∂te − γ (∆e − fδ(e)) + (v · ∇)e = 0 in (0,T ) ×Ω,

v = 0, ∂ne = 0 on (0,T ) × ∂Ω,

v(x, 0) = v0(x), e(x, 0) = e0(x) in Ω ,

(1)

where ν > 0 is the fluid viscosity, λ > 0 is the elasticity constant, γ > 0 is a relaxation in time
constant, the function fδ is defined by

fδ(e) =
1
δ2

(
|e|2 − 1

)
e with |e| ≤ 1, (2)

where | · | is the euclidian norm in R3, δ > 0 is a penalization parameter, and g is a known
function defined in (0,T ) ×Ω.

For more details about the penalization function fδ(e) we recommend to readers, the fol-
lowing references (cf. [7], Lin & Liu [8]) and Guillén-González et al (cf. [6]). Here, all those
derivatives in problem (1) are in the sense of the distributions of Schwartz (see, L. Schwartz
[12]).

Note that system (1) is a simplified model, where the terms modeling the stretching effect
(for example) are not contained (see [13] for a more general model). On the other hand, if
a tensor variable Q is used to analyze the molecular behavior instead of the director field e,
some other more complex Q-tensor models appear (see [10, 9, 5, 3, 4]).

§2. Spaces framework and regularity definitions and results

We will use V and H the Lebesgue-Sobolev spaces of type H1(Ω), H1
0(Ω) and L2(Ω) asso-

ciated with the incompressibility and adherence velocity conditions (as usual in the Navier-
Stokes framework), given by

V = {y ∈ H1(Ω); ∇ · y = 0, u|Γ = 0}, H = {y ∈ L2(Ω); ∇ · y = 0,u · n|Γ = 0}.

We deal with two different notions of solution for the Navier-Stokes equations and system
(1). Namely,

Definition 1. We call

• a weak solution for the Navier-Stokes equations in (0,T ) to a function v satisfying the
variational formulation for these equations and with the following regularity:

v ∈ L∞
(
0,T ; H

)
∩ L2(0,T ; V

)
, (3)

• a weak solution for (1) in (0,T ) to a pair (v, e) satisfying the variational formulation
for (1), where v satisfies (3) and e has the following regularity:

e ∈ L∞
(
0,T ; H1(Ω)

)
∩ L2(0,T ; H2(Ω)

)
. (4)
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Definition 2. We call

• a strong solution for the Navier-Stokes equations in (0,T ) to a function v satisfying the
variational formulation for these equations and with the following regularity:

v ∈ L∞
(
0,T ; H ∩H1(Ω)

)
∩ L2(0,T ; H2(Ω) ∩ V

)
, (5)

• a strong solution for (1) in (0,T ) to a pair (v, e) satisfying the variational formulation
for (1), where v satisfies (5) and e has the following regularity:

e ∈ L∞
(
0,T ; H2(Ω)

)
∩ L2(0,T ; H3(Ω)

)
. (6)

The existence of global in time weak solution for (1), that is a weak solution in (0,T )
for any given T ≤ +∞, in the case of Dirichlet boundary conditions for e (e|Σ = h in-
stead of ∂ne|Σ = 0) has been treated in the work of Lin et al. (cf. [8]) for the case of time-
independent Dirichlet boundary data, and the time-dependent case and the strong regularity
of time-periodic solutions were studied by Climent et al. (cf. [2]). In all cases, the following
compatibility hypothesis were considered:

|e0| ≤ 1 a. e. in Ω, |h| ≤ 1 a. e. in Σ, (7)

and (among others) v0 ∈ H and e0 ∈ H1(Ω). On the other hand, under the hypothesis of
strong regularity for the data v0 ∈ V, e0 ∈ H2(Ω) it is known the existence and uniqueness of
strong solution under some restrictions:

• global in time for big enough viscosity (ν >> 1),

• local in time (the strong solution is defined in (0,T ∗), being T∗ ≤ T small enough) for
any data.

For the analysis of stability results it is necessary to start from a solution defined in
(0,+∞). Considering homogeneous Neumann boundary conditions for e (∂ne|Σ = 0), it
is possible to prove the existence of a global weak solution (v, e) in (0,+∞) for any data
(v0, e0, g) ∈ H ×H1(Ω) × L2(0,+∞; L2(Ω)), that is:

v ∈ L∞
(
0,+∞; H

)
∩ L2(0,+∞; V

)
,

e ∈ L∞
(
0,+∞; H1(Ω)

)
∩ L2(0,+∞; H2(Ω)

)
.

(8)

Remark 1. For either non-homogeneous Dirichlet or homogeneous Neumann boundary con-
ditions for e, it is possible to prove that (see, for instance, Appendix A in [6] for a proof):

e ∈ L∞((0,+∞) ×Ω) (9)
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§3. Stability result for (1)

The result of stability that we present is a generalization of a result stablished by Ponce et
al. (cf. [11]), made for the classical Navier-Stokes equations. Our stability results for system
(1) can be stated as follows:

Theorem 1. Suppose that there exists a global strong solution (v, q, e) of system (1) with the
regularity

v ∈ L∞loc
(
0,+∞; V

)
∩ L2

loc
(
0,+∞; D(A)

)
,

e ∈ L∞loc
(
0,+∞; H2(Ω)

)
∩ L2

loc
(
0,+∞; H3(Ω)

)
,

(10)

and that satisfies the Leray global criterion of regularity

‖∇v(t)‖4 and ‖∇e(t)‖4H1(Ω) belong to L1(0,∞). (11)

Assume u0 ∈ V, d0 ∈ H2(Ω) and Pk ∈ L2(0,∞; H
)
, being P is the Helmholtz projector

P : L2(Ω)→ H = {v ∈ L2(Ω) : ∇ · v = 0}
L2(Ω)

. (12)

There exists a δ > 0 such that if (u0,d0,k) satisfies:

‖∇(u0 − v0)‖ + ‖d0 − e0‖H2(Ω) +

∫ ∞

0
‖P(k − g)(t)‖2dt < δ (13)

then there exists a unique global strong solution (u, p,d) of system (1) with data (u0,d0, Pk).
Moreover, there exists C = C(δ) with C(δ)→ 0 as δ→ 0 such that

sup
t≥0
‖∇(u(t) − v(t))‖ + sup

t≥0
‖d(t) − e(t)‖H2(Ω) ≤ C(δ). (14)

Note that several results are proven: the global regularity in time for the strong solution
(v, e), that is, the “loc" character in (10) can be removed; the uniqueness of solution for
system (1) and that solution (u,d) is also a global in time strong solution near (v, e) along
(0,+∞).

3.1. Scketch of the proof of Theorem 1
Here we focus on the obtention of (14). The detailed proof of this asymptotic result together
with the uniqueness of the global strong solution (u, p,d) can be found in [1].

We consider the perturbation (u, p,d) which satisfies the system

∂tu − ν∆u + (u · ∇)u + ∇p = −λ(∇d)t∆d + k in (0,T ) ×Ω,

∇ · u = 0 in (0,T ) ×Ω,

∂td − γ (∆d − fδ(d)) + (u · ∇)d = 0 in (0,T ) ×Ω,

u = 0, ∂nd = 0 on (0,T ) × ∂Ω,

u(x, 0) = u0(x), d(x, 0) = d0(x) in Ω ,

(15)
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that it is a global in time weak solution, even in (0,+∞). Therefore, denoting by A = −P∆

the Stokes operator with domain

D(A) = V ∩H2(Ω), V = H1
0(Ω) ∩H,

where P is the Helmholtz projector defined in (12), we want to analyze the behavior of
(w, z) := (v − u, e − d), which satisfies:

∂tw + νAw = −P
[
(v · ∇)w + (w · ∇)v − (w · ∇)w

]
−λP

[
(∇e)t∆z + (∇z)t∆e − (∇z)t∆z

]
+ P

(
g − k

)
in (0,T ) ×Ω,

∇ · w = 0 in (0,T ) ×Ω,

∂tz − γ∆z = −γ
[
fδ(e) − fδ(e − z)

]
−

[
(v · ∇)z + (w · ∇)e − (w · ∇)z

]
in (0,T ) ×Ω,

w = 0, ∂nz = 0 on (0,T ) × ∂Ω,

w(x, 0) = w0(x), z(x, 0) = z0(x) in Ω .
(16)

First, we take z as test function in (16)3, we obtain:

d
dt
‖z‖2 + γ ‖z‖2H1(Ω) +

5γ
4δ2 ‖z‖

4
L4(Ω) ≤ Cε,δ,γ ‖z‖2 + ε ‖∇w‖2 (17)

because ∇e ∈ L∞(0,+∞; L2(Ω)) thanks to (8) for T = +∞. Then, we take (w,−λ∆z) as test
function in (16), obtaining:

d
dt

(
‖w‖2 + λ ‖∇z‖2

)
+ ν ‖∇w‖2 + γ λ ‖∆z‖2 ≤ C

(
‖∇v‖4 + ‖∆e‖4

) (
‖w‖2 + λ ‖∇z‖2

)
+ C‖g − h‖2H−1(Ω) + C ‖∇z‖2 + ε1‖∇z‖2H1(Ω)

(18)
Note that ε and ε1 are small parameters, which will be defined later in order to control the
terms containing ε and ε1 on the right hand side of (20) with the terms appearing on the left
hand side of (20); and Cε,ε1 denote different constants, increasing (up to +∞) when ε, ε1 ↓ 0.

An finally, we test (16) with (Aw,∆2z), obtaining:

d
dt

(
‖∇w‖2 + ‖∆z‖2

)
+ (ν − 11ε) ‖Aw‖2 + (γ − 10ε1) ‖∇(∆z)‖2

≤ Cε,ε1

(
‖∇w‖6 + ‖z‖4H2(Ω)‖∇w‖2 + ‖z‖6H2(Ω)

)
+ Cε,ε1

(
‖∇v‖4 + ‖∇e‖4H1(Ω) + 1

) (
‖∇w‖2 + ‖z‖2H2(Ω)

)
+Cε,ε1 ‖z‖2H2(Ω) + Cε,ε1 ‖P(g − k)‖2 + ε ‖z‖2H3(Ω)

(19)

Observe that the bound for the term ∇(
[
fδ(e) − fδ(e − z)

]
),∇(∆z)) can be made as follows:

Since e has the regularity of (8)2, (9) and fδ(e) = 1
δ2

(
|e|2 − 1

)
e, the mapping

Ψ : L∞
(
0,∞; H1(Ω)

)
∩L2(0,∞; H2(Ω)

)
∩L∞((0,∞)×Ω)→ L∞

(
0,∞; L2(Ω)

)
∩L2(0,∞; H1(Ω)

)
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given by:

Ψ(e) = ∇fδ(e) =
1
δ2

[
(|e|2 − 1)∇e + 2(e · ∇e) e

]
is well defined. Observe that

δΨ(e,h) =
1
δ2

(
2 (e · h)∇e +

(
|e|2 − 1

)
∇h + 2 (h · ∇e) e + 2 (e · ∇h) e + 2 (e · ∇e) h

)
Therefore, as Ψ(e) − Ψ(e − z) = δΨ(ẽ, z), being δΨ(ẽ, z) the Gâteaux derivative of Ψ in the
direction z, and at the point ẽ defined as ẽ = θ e + (1 − θ) (e − z), θ ∈ (0, 1) (i.e., ẽ is any
element of the convex line [e, e − z]), we have:

‖Ψ(e) − Ψ(e − z)‖ ≤ ‖δΨ(ẽ, z)‖ ≤ Cδ

(
‖∇ẽ‖‖z‖1/2H1(Ω)‖z‖

1/2
H2(Ω) + ‖∇z‖

)
Therefore, we can deduce that:(

∇
[
fδ(e) − fδ(e − z))

]
,∇(∆z)

)
≤ ε ‖∇(∆z)‖2 + Cε,γ,δ ‖z‖2H2(Ω)

because of ‖∇ẽ‖ ≤ C due to z, e ∈ L∞(0,+∞; H1(Ω)) and because of e − z = d ∈ L∞(Q)
thanks to (9).

Adding (17), (18) and (19), and choosing adequate small parameters ε, ε1 (and their
correspondent constants C, Cε,ε1 ), we obtain:

h′(t) + H(t) ≤ C1 h(t)3 + C
(
‖∇v(t)‖4 + ‖∇e(t)‖4H1(Ω) + ‖̃e(t)‖2H2(Ω) + 1

)
h(t)

+ C ‖P(g − k)(t)‖2
(20)

for 
h(t) = ‖∇w(t)‖2 + λ‖z(t)‖2H1(Ω) + ‖∆z(t)‖2

H(t) = ν‖∇w(t)‖2 + ‖Aw(t)‖2 + γλ
(
‖z(t)‖2H1(Ω) + ‖∆z(t)‖2

)
+ γ ‖∇(∆z(t))‖2

where C (henceforward) is a generic positive constant depending on initial data and smooth-
ness of set Γ. Observe that ‖̃e(t)‖2H2(Ω) ∈ L1(0,+∞) thanks to the global in time weak regularity
(8).

Due to the structure of h(t) and H(t), it is evident that (for a constant C):

C h(t) ≤ H(t)

Therefore, if ζ := C min{γ, ν} > 0 and ϕ(t) := ‖∇v(t)‖4 + ‖∇e(t)‖4H1(Ω) + ‖̃e(t)‖2H2(Ω) then
(20) becomes

h′(t) + ζh(t) ≤ Cϕ(t)h(t) + Ch(t) + Ch3(t) + C‖P(g − k)‖2. (21)

Note that h ≥ h3 if and only if h ≤ 1. In this case we would have directly that h would be
uniformly bounded on whole interval [0,∞). Thus, we must have to work the case h3 ≥ h in
(21), and thus

h′(t) + ζh(t) ≤ Cϕ(t)h(t) + Ch3(t) + C‖P(g − k)(t)‖2. (22)



Stability results for nematic liquid crystals 61

In this point, we employ some similar arguments as in Ponce at al. (cf. [11]).

Due to (13), h(0) < δ. We claim that h(t) ≤
(
ζ

C

)1/2

for any t ∈ [0,∞). Indeed, we argue
by contradiction: Assume that:

there exists a t∗ such that h(t∗) =

(
ζ

2C

)1/2

(23)

and h(s) ≤
(
ζ

2C

)1/2

for 0 ≤ s ≤ t∗. Therefore, for any t ∈ [0, t∗]

h′(t) +
ζ

2
h(t) ≤ Cϕ(t)h(t) + C‖P(g − h)(t)‖2.

We denote Φ(t) = C
∫ t

0
ϕ(s) ds and it is easy to obtain:

h(t) ≤ eΦ(t)
(
h(0) + C e−

ζt
2

∫ t

0
e
ζs
2 ‖P(g − k)(s)‖2 ds

)
(24)

Using (13), if we define δ as follows:

δ =
1

2 max
{
1, eΦ(+∞)} (

ζ

2C

)1/2

, (25)

then we obtain that:

h(t) <
1
2

(
ζ

2C

)1/2

for any t ∈ [0, t∗]. (26)

In particular, h(t∗) <
1
2

(
ζ

2C

)1/2

, which contradicts (23). Observe that the argument is still
true for any t∗ ∈ [0,∞].
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[1] Clark, H., Rodríguez-Bellido, M. A., and Rojas-Medar, M. A. Global stability of
solutions of a 3d nematic liquid crystal model. In preparation.
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[3] Guillén-González, F., and Rodríguez-Bellido, M. A. Weak time regularity and unique-
ness for a Q-tensor model. SIAM Journal on Mathematical Analysis 46, 5 (2014), 3540–
3567.
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[5] Guillén-González, F., and Rodríguez-Bellido, M. A. Weak solutions for an initial-
boundary Q-tensor problem related to liquid crystals. Nonlinear Analysis. Theory, Meth-
ods & Applications. An International Multidisciplinary Journal. Series A: Theory and
Methods 112 (2015), 84–104.
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