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Abstract. We show how the solutions to a 2 × 2 linear system involving Schrödinger
operators blow up as the parameter µ tends to some critical value which is the principal
eigenvalue of the system; here the potential is continuous positive with superquadratic
growth and the square matrix of the system is with constant coefficients and may have a
double eigenvalue.
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§1. Introduction

We study here the behavior of the solutions to a 2 × 2 system (considered in its variational
formulation):

(S ) LU := (−∆ + q(x))U = AU + µU + F(x) in RN ,

U(x)|x|→∞ → 0

where q is a continuous positive potential tending to +∞ at infinity with superquadratic
growth; U is a column vector with components u1 and u2 and A is a 2 × 2 square matrix
with constant coefficients. F is a column vector with components f1 and f2.
Such systems have been intensively studied mainly for µ = 0 and for A with 2 distinct eigen-
values; here we consider also the case of a double eigenvalue. In both cases, we show the
blow up of solutions as µ tends to some critical value ν which is the principal eigenvalue
of System (S ). This extends to systems involving Schrödinger operators defined on RN ear-
lier results valid for systems involving the classical Laplacian defined on smooth bounded
domains with Dirichlet boundary conditions.
This paper is organized as follows: In Section 2 we recall known results for one equation. In
Section 3 we consider first the case where A has two different eigenvalues and then we study
the case of a double eigenvalue.

§2. The equation

We shortly recall the case of one equation

(E) Lu := (−∆ + q(x))u = σu + f (x) ∈ RN ,
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lim
|x|⇒+∞

u(x) = 0.

σ is a real parameter.

Hypotheses
(Hq) q is a positive continuous potential tending to +∞ at infinity.
(H f ) f ∈ L2(RN), f ≥ 0 and f > 0 on some subset with positive Lebesgue measure.
It is well knwon that if (Hq) is satisfied, L possesses an infinity of eigenvalues tending to +∞:
0 < λ1 < λ2 ≤ . . . .

Notation: (Λ, φ) Denote by Λ the smallest eigenvalue of L; it is positive and simple and
denote by φ the associated eigenfunction, positive and with L2-norm ‖φ‖ = 1.

It is classical [9, 11] that if f > 0 and σ < Λ the positivity is improved, or in other words, the
maximum principle (MP) is satisfied:

(MP) f ≥ 0, . 0 ⇒ u > 0.

Lately, for potentials growing fast enough (faster than the harmonic oscillator), another notion
has been introduced [2, 3, 5, 6] which improves the maximum (or antimaximum principle):
the "groundstate positivity" (GSP) (resp. " negativity" (GSN)) which means that there exists
k > 0 such that

u > kφ (GSP) (resp. u < −kφ (GSN)) .
We also say shortly "fundamenal positivity" or" negativity", or also "φ-positivity" or "nega-
tivity".
The first steps in this direction use a radial potential. Here we consider a small perturbation
of a radial one as in [5].

The potential q We define first a class P of radial potentials:

P := {Q ∈ C(R+, (0,∞))/∃R0 > 0,Q′ > 0 a.e. on [R0,∞),
∫ ∞

R0

Q(r)−1/2 < ∞}. (1)

The last inequality holds if Q is growing sufficiently fast (> r2). Now we give results of GSP
or GSN for a potential q which is a small perturbation of Q; we assume:
(H′q) q satisfies (Hq) and there exists two functions Q1 and Q2 in P, and two positive con-
stants R0 and C0 such that

Q1(|x|) ≤ q(x) ≤ Q2(|x|) ≤ C0Q1(|x|), ∀x ∈ RN , (2)∫ ∞

R0

(Q2(s) − Q1(s))
∫ s

R0

exp
(
−

∫ s

r
[Q1(t)1/2 + Q2(t)1/2]dt

)
drds < ∞. (3)

Denoting by Φ1 (resp. Φ2) the groundstate of L1 := −∆ + Q1 (resp. L2 = −∆ + Q2),
Corollary 3.3 in [5] says that all these groundstates are "comparable" that is there exists
constants 0 < k1 ≤ k2 ≤ ∞ such that k1φ ≤ Φ1,Φ2 ≤ k2φ.
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Theorem 1. (GSP) [5] If (H′q) and (H f ) are satisfied, then, for σ < Λ, there is a unique
solution u to (E) which is positive, and there exists a constant c > 0, such that

u > cφ. (4)

Moreover, if also f ≤ Cφ with some constant C > 0, then

u ≤
C

Λ − σ
φ. (5)

Remark 1. This holds also if we only assume f ∈ L2 and f 1 :=
∫

fφ > 0
The space X : It is convenient for several results to introduce the space of "groundstate
bounded functions":

X := {h ∈ L2(RN) : h/φ ∈ L∞(RN)}, (6)

equipped with the norm ‖h‖X = ess supRn (|h|/φ).
Hypothesis (H′f ) We consider now functions f which are such that
(H′f ): f ∈ X and f 1 :=

∫
fφ > 0.

For a potential satisfying (H′q) and a function f ∈ X, there is also a result of "groundstate
negativity" (GSN) for (E); it is an extension of the antimaximum principle, introduced by
Clément and Peletier in 1978 [8] for the Laplacian when the parameter σ crosses Λ.

Theorem 2. (GSN) [5] Assume (H′q) and (H′f ) are satisfied; then there exists δ( f ) > 0 and
a positive constant c′ > 0 such that for all σ ∈ (Λ,Λ + δ),

u ≤ −c′φ. (7)

Theorem 3. Assume (H′q) and (H′f ) are satisfied. Then there exists δ > 0, independant of σ,
such that for Λ − δ < σ < Λ there exists positive constants k′ and K′, depending on f and δ
such that

0 <
k′

Λ − σ
φ < u <

K′

Λ − σ
φ. (8)

If Λ < σ < Λ + δ, there exists positive constants k” and K”, depending on f and δ such that

k”
Λ − σ

φ < u <
K”

Λ − σ
φ < 0. (9)

This result extends earlier one in [10] and a close result is Theorem 2.03 in [7]. It shows in
particular that u ∈ X and |u| → ∞ as |ν − µ| → 0.
Proof: Decompose u and f on φ and its orthogonal:

u = u1φ + u⊥ ; f = f 1φ + f⊥. (10)

We derive from (E): Lu = σu + f that

Lu⊥ = σu⊥ + f⊥ (11)

Lu1φ = Λu1φ = σu1φ + f 1φ. (12)
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We notice that, since q is smooth, so is u. Also, since f ∈ X, f⊥, u and u⊥ are also in X and
hence are bounded. Choose σ < Λ and assume (H′f ). We derive from Equation (11) (by [4]
Thm 3.2) that : ||u⊥||X < K1. Therefore |u⊥| is bounded by some cste.φ > 0.
From Equation (12) we derive

u1 =
f 1

(Λ − σ)
→ ±∞ as (Λ − σ)→ 0. (13)

Take δ small enough and σ ∈ (Λ − δ,Λ). Since u = u1φ + u⊥, then

0 <
K′

Λ − σ
φ < u <

K”
Λ − σ

φ.

For σ > Λ. we do exactly the same, except that the signs are changed for u1 in (13).

§3. A 2 × 2 Linear system

Consider now a linear system with constant coefficients.

(S ) LU = AU + µU + F(x) in RN .

As above, L := −∆ + q where the potential q satisfies (H′q), and where µ is a real parameter.
L can be detailed as 2 equations:

(S )
{

Lu1 = au1 + bu2 + µu1 + f1(x)
Lu2 = cu1 + du2 + µu2 + f2(x) in RN ,

u1(x), u2(x)|x|→∞ → 0.

Assume

(HA) A =

(
a b
c d

)
with b > 0 and D := (a − d)2 + 4bc ≥ 0.

Note that b > 0 does not play any role since we can always change the order of the equations.
The eigenvalues of A are

ξ1 =
a + d +

√
D

2
≥ ξ2 =

a + d −
√

D
2

.

As far as we know, all the previous studies suppose that the largest eigenvalue ξ1 is simple
(i.e. D = (a − d)2 + 4bc > 0). Here we also study, in the second subsection, the case of a
double eigenvalue ξ1 = ξ2, that is D = 0; this implies necessarily bc < 0 and necessarily the
matrix is not cooperative.
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3.1. Case ξ1 > ξ2

This is the classical case where ξ1 is simple. Set ξ1 > ξ2. The eigenvectors are

Xk =

(
b

ξk − a

)
,

As above, denote by (Λ, φ), φ > 0, the principal eigenpair of the operator L = (−∆ + q(x)).
It is easy to see that

L(Xkφ) − AXkφ = (Λ − ξk)Xkφ, k = 1, 2

Set X := X1. Hence
ν = Λ − ξ1 (14)

is the principal eigenvalue of (S ) with associated eigenvector Xφ. Note that the components
of Xφ do not change sign, but, in the case of a non cooperative matrix they are not necessarily
both positive.

3.1.1. Behavior for µ→ ν = Λ − ξ1.

We prove:

Theorem 4. Assume (H′q), b > 0 and D > 0. Assume also that f1 and f2 are in X and

(a − ξ2) f 1
1 + b f 1

2 > 0. (15)

Then, there exists δ > 0, independant of µ, such that if ν − δ < µ < ν, there exists a positive
constant γ depending only on F and Matrix A such that

For cooperative systems

c > 0 ⇒ u1, u2 ≥
γ

ν − µ
φ > 0, (16)

For non-cooperative systems

d > a ⇒ u1, u2 ≥
γ

ν − µ
φ > 0, (17)

a > d ⇒ u1,−u2 ≥
γ

ν − µ
φ > 0. (18)

If ν < µ < ν + δ, the sign are reversed.

Remark 2. It is noticeable that for all these cases, |u1|, |u2| → +∞ as |ν − µ| → 0.
These results extend Theorem 4.2 in [2].
Proof: As in [1], we use J the associated Jordan matrix (which in this case is diagonal) and
P the change of basis matrix which are such that

A = PJP−1.

Here

P =

(
b b

ξ1 − a ξ2 − a

)
, P−1 =

1
b(ξ1 − ξ2)

(
a − ξ2 b
ξ1 − a −b

)
. (19)
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J =

(
ξ1 0
0 ξ2

)
.

Denoting Ũ = P−1U and F̃ = P−1F, we derive from System (S ) (after multiplication by
P−1U to the left):

LŨ = JŨ + µŨ + F̃.

Since J is diagonal we have two independant equations:

Lũk = (ξk + µ)ũk + f̃k, k = 1 or 2. (20)

The projection on φ and on its orthogonal for k = 1 and 2 gives

ũk = (ũk)1 φ + ũ⊥k , f̃k = ( f̃k)1 φ + f̃⊥k ;

hence
L(ũk)1 φ = Λ(ũk)1 φ = ξk(ũk)1 φ + µ(ũk)1 φ + ( f̃k)1φ, (21)

Lũ⊥k = ξkũ⊥k + µũ⊥k + f̃⊥k . (22)

If both fk are in X, fk/φ are bounded and hence both f̃⊥k /φ are bounded . Therefore, by (22)
both ũ⊥k /φ are also bounded since the smallest eigenvalue for L acting on φ⊥ is λ2 ,< Λ.
We derive from (21) that

(ũk)1 =
( f̃k)1

Λ − ξk − µ
.

Consider again Equation (21) for k = 2; obviously, (ũ2)1 stays bounded as µ→ ν = Λ−ξ1 ,<
Λ − ξ2 and therefore ũ2/φ stays bounded.
For k = 1, (ũ1)1 =

( f̃1)1

ν−µ
→ ∞ as µ → ν = Λ − ξ1, where ( f̃1)1 = 1

ξ1−ξ2
((a − ξ2) f 1

1 + b f 1
2 ) > 0;

this is the condition (15) which appears in Theorem 4. Then, we simply apply Theorem 3 to
(20) for k = 1 and deduce that there existes δ > 0, such that, for |Λ − ξ1 − µ| = |ν − µ| < δ,
there exists a positive constant C > 0 such that

µ < ν ⇒ ũ1 ≥
C

ν − µ
φ > 0; µ > ν ⇒ ũ1 ≤

C
ν − µ

φ < 0.

If |µ − ν| small enough

(ũ1)1 ≥
K

ν − µ
> 0 i f µ < ν ; (ũ1)1 ≤

K
ν − µ

< 0 i f µ > ν

where K is a positive constant depending only on F and A.
Now, it follows from U = PŨ, that

u1 = b(ũ1 + ũ2), u2 = (ξ1 − a)ũ1 + (ξ2 − a)ũ2.

As ν − µ → 0, since ũ2/φ stays bounded, u1 behaves as b(ũ1)1φ > 0 ; u2 behaves as (ξ1 −

a)(ũ1)1φ.
Therefore 3 cases appear according to matrix A:

If A is cooperative (b > 0, c > 0), then ξ2 < a < ξ1 so that (ξ1 − a) > 0 and u2 > 0.
If A is non-cooperative with b > 0, c < 0 , d > a, then a < ξ2 < ξ1 ⇒ (ξ1−a) > 0, u2 > 0.
If A is non-cooperative with b > 0, c < 0, a > d, then ξ2 < ξ1 < a ⇒ (ξ1−a) < 0, u2 < 0.

Remark 3. Indeed, we always assume that b > 0, hence u1 > 0 for ν − µ > 0 small enough.
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3.1.2. Behavior of the solution for µ→ ν′ := Λ − ξ2.

Obviously, ν′ := Λ − ξ2 is also an eigenvalue of the system with associated eigenvector X2φ.
Moreover we assume that ν′ is the second eigenvalue of the system: ν < ν′ < λ2 − ξ1.

Theorem 5. Assume (H′q), b > 0, D > 0 and ν′ < λ2 − ξ1. Assume also that f1 and f2 are in
X and

(ξ1 − a) f 1
1 − b f 1

2 > 0. (23)

Then, for 0 < ν′ − µ small enough, there exists a positive constant γ′ depending only on F
and Matrix A such that
For cooperative systems, (c > 0), then

u1,−u2 ≥
γ′

ν′ − µ
φ > 0,

For non-cooperative systems (c < 0), then

d > a ⇒ u1, u2 ≥
γ′

ν′ − µ
φ > 0. (24)

a > d ⇒ u1,−u2 ≥
γ′

ν − µ
φ > 0. (25)

If 0 < µ − ν′ small enough, the sign are reversed.

Proof The proof is exactly the same as for Theorem 4 except that we derive from (21) that
(ũ1)1 stays bounded and (ũ2)1 =

( f̃2)1

ν′−µ
→ ∞ as ν′ − µ→ 0. This holds also since for 0 < µ− ν′

small enough, µ + ξ2 < µ + ξ1 < λ2. Now u1 behaves as b(ũ2) and u2 as (ξ2 − a)(ũ2), and the
result follows.

3.2. Case ξ1 = ξ2

Consider now the case where the coefficients of the matrix A satisfy b > 0 and

D := (a − d)2 + 4bc = 0.

Of course this implies bc < 0 and since b > 0 , then c < 0: only for non-cooperative systems
a double root can appear.
Now ξ1 = ξ2 = ξ = a+d

2 and ν = Λ − ξ. The proof of Theorem 4 is no more valid since e.g. in
(19) there is a factor of the form 1

ξ1−ξ2
. Moreover Matrix J is triangular and the system in Ũ

is no more decoupled. We prove here

Theorem 6. Assume (H′q) and b > 0, c < 0 with (a − d)2 + 4bc = 0; assume also that f1, f2
are in X and :

(a − d)
2

f 1
1 + b f 1

2 > 0. (26)

If ν − δ < µ < ν + δ, δ small enough, there exists a positive constant γ such that

if a > d u1 ≥
γ

|ν − µ|
φ, u2 ≤ −

γ

|ν − µ|
φ.
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if d > a u1 ≥
γ

|ν − µ|
φ, u2 ≥

γ

|ν − µ|
φ.

Remark 4. We notice that u1 is always positive whatever the sign of d− a or of ν−µ. Also u2
keeps the same sign for µ going over ν. Things work as having 2 eigenvalues ξ1 and ξ2 with
ξ1 − ξ2 → 0. If (15) near ξ1 and (23) near ξ2 are valid together (that is if ( f1)1 > 0 and

(ξ1 − a)( f1)1 ≥ b( f2)1 ≥ (ξ2 − a)( f1)1 i f d > a;

(a − ξ2)( f1)1 > −b( f2)1 ≥ (a − ξ1))( f1)1 i f a > d, )

we apply the theorems above and derive that the functions u1 and u2 change sign twice (as µ
goes over ν and ν′) and finally they keep the same sign. Finally for ξ1 = ξ2, the 2 conditions
reduce to ( f1)1 > 0 and (26).
Proof The eigenvector associated to eigenvalue ξ is

X =

(
b

d−a
2

)
.

The vector Xφ is thus an eigenvector for L − A,

L(Xφ) − AXφ = (Λ − ξ)Xφ = νXφ.

We will need to use two different decompositions of the matrix A. For the decomposition 1
we choose

P1 =

(
b 2b

a−d
d−a

2 0

)
, P−1

1 =
1
b

(
0 − 2b

a−d
a−d

2 b

)
.

So the associated triangular matrix J1 is

J1 = P−1
1 AP1 =

(
ξ 1
0 ξ

)
.

As above, setting Ũ = P−1
1 U and F̃ = P−1

1 F, we derive from System (S )

LŨ = J1Ũ + µŨ + F̃.

We do not have anymore a decoupled system but{
Lũ1 = (ξ + µ)ũ1 + ũ2 + f̃1,
Lũ2 = + (ξ + µ)ũ2 + f̃2; (27)

here f̃1 = −2
a−d f2 and f̃2 =

(a−d)
2b f1 + f2 are in X and ( f̃2)1 > 0 by (26).

• If ξ + µ < Λ (that is µ < ν), by Theorem 3 applied to the second equation, there exists a
constant K > 0, such that ũ2 >

K
ν−µ

φ. Hence, for ν − µ small enough for any f̃1 ∈ X, ũ2 + f̃1
is strictly positive and is in X; then again Theorem 3 applied to the first equation implies that
there exists a constant K′ > 0, such that ũ1 >

K′
ν−µ

φ.
For a > d, we can conclude that there exists a constant γ > 0,

U = P1Ũ =

 u1 = bũ1 + 2b
a−d ũ2 > γ

ν−µ
φ,

u2 = d−a
2 ũ1 < − γ

ν−µ
φ.
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• If µ > ν we have reversed sign for ũ2. Hence, for µ− ν small enough for any f̃1 ∈ X, ũ2 + f̃1
is stricly negative and is in X; then again Theorem 3 for the first equation implies that there
exists a constant K′ > 0, such that ũ1 >

K′
µ−ν

φ.
For d > a, we can conclude that there exists a constant γ > 0,

U = P1Ũ =

 u1 = bũ1 + 2b
a−d ũ2 > γ

µ−ν
φ,

u2 = d−a
2 ũ1 > γ

µ−ν
φ.

For the remaining cases, we need to use an other decomposition of matrix A. For the decom-
position 2 we choose

P2 =

(
b 0

d−a
2 1

)
, P−1

2 =
1
b

(
1 0

a−d
2 b

)
.

So the associated triangular matrix J2 is

J2 = P−1
2 AP2 =

(
ξ 1
0 ξ

)
.

As above, setting Ũ = P−1
2 U and F̃ = P−1

2 F, we derive from System (S ) the same system

with the same function f̃2 =
(a − d)

2b
f1 + f2 :

{
Lũ1 = (ξ + µ)ũ1 + ũ2 + f̃1,
Lũ2 = + (ξ + µ)ũ2 + f̃2.

(28)

• If ξ + µ < Λ (that is µ < ν), since ( f̃2)1 =
(a−d)

2b f 1
1 + f 1

2 > 0, we get (exactly as for
decomposition 1) that there exists a constant K > 0, such that ũ2 >

K
ν−µ

φ and there exists a
constant K′ > 0, such that ũ1 >

K′
ν−µ

φ.
For d > a, we can conclude that there exists a constant γ > 0,

U = P2Ũ =

{
u1 = bũ1 > γ

ν−µ
φ,

u2 = d−a
2 ũ1 + ũ2 > γ

ν−µ
φ.

• If µ > ν we have reversed sign for ũ2. Hence, there exists a constant K′ > 0, such that
ũ1 >

K′
ν−µ

φ.
For a > d, we can conclude that there exists a constant γ > 0,

U = P2Ũ =

{
u1 = bũ1 > γ

µ−ν
φ,

u2 = d−a
2 ũ1 + ũ2 < − γ

µ−ν
φ.
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