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§1. Setting of the problem

We consider a compressible non-Newtonian fluid of power-law type. The aim of the paper
is to extend the result given by Novotný and Nečasová [13] to the more general case of
measure-valued solutions and to derive a relative entropy inequality for this system.

Before stating the problem let us first explain the meaning of a measure-valued solution.
It is a map which gives for every point of the domain a probability distribution of values
such that the equation is satisfied only in an average sense. In a case that the probability
distribution is reduced to a point mass almost everywhere in the domain then a measure valued
solution is a weak solution of the problem, see e.g. the case of incompressible non-Newtonian
case in work of Nečas et al. [12] or Bellout and Bloom [3]. The advantage of measure-
valued solutions is the property that in many cases, the solutions can be obtained from weakly
convergent sequences of approximate solutions. The measure-valued solutions for systems
of hyperbolic conservations laws were initially introduced by DiPerna [4]. He used Young
measures to pass to the limit in the artificial viscosity term. In the case of the incompressible
Euler equations, DiPerna and Majda [5] proved global existence of measure-valued solutions
for any initial data with finite energy. They introduced generalized Young measures to take
into account oscillation and concentration phenomena. Thereafter the existence of measure-
valued solutions was finally shown for further models of fluids, e.g. compressible Euler and
Navier-Stokes equations [15]. The existence of measure-valued solutions for non-Newtonian
fluids was proved by Novotný and Nečasová [13] . A generalization was given by Alibert and
Bouchité, see [1]. More details can be found in [9], [10] and [16].

Recently, weak-strong uniqueness for generalized measure-valued solutions of isentropic
Newtonian Euler equations were proved in [8]. Inspired by previous results, the concept
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of dissipative measure-valued solution was finally applied to the barotropic compressible
Navier-Stokes system [6].

We consider the motion of the fluid in a bounded domain Ω ⊂ R3 with ∂Ω ∈ C0,1 which
is governed by the following system of equations

∂t% + divx(%u) = 0 in (0,T ) ×Ω, (1)

∂t(%u) + divx(%u ⊗ u) + ∇x p = divxS in (0,T ) ×Ω, (2)

where % is the mass density and u is the velocity field, functions of the spatial position x ∈ R3

and the time t ∈ R. The scalar function p is the pressure, and it is supposed to be given
function of the density. In particular, we consider the isothermal case, namely p = λ %, with
λ > 0 a constant. The stress tensor is given by

S i j = β divxu δi j + 2ω ei, j(u), where (3)

β = β

(̂
u, divxu, det

(
∂ui

∂x j

))
, ω = ω

(̂
u, divxu, det

(
∂ui

∂x j

))
, β ≥ −

2
3
ω, ω ≥ 0 (4)

and û =
√

ei, j(u)ei, j(u), ei, j(u) = 1
2

(
∂ui
∂x j

+
∂u j

∂xi

)
.

For T ∈ (0,∞) we denote the time interval I, I ≡ (0,T ), and by QT ≡ I×Ω the time-space
cylinder. We consider the Dirichlet boundary conditions and initial data, respectively,

u = 0 in I × ∂Ω, u(0) = u0, %(0) = %0. (5)

We consider also the following assumptions on the viscosity coefficients:

2ω
(̂
u, divxu, det

(
∂ui

∂x j

)) ∣∣∣̂u∣∣∣2 + β

(̂
u, divxu, det

(
∂ui

∂x j

))
divxu divxu ≥ k2

∣∣∣̂u∣∣∣γ , (6)

2ω
(̂
u, divxu, det

(
∂ui

∂x j

))
ei j(u) + β

(̂
u, divxu, det

(
∂ui

∂x j

))
divxu δi j ≤ k1

∣∣∣̂u∣∣∣γ−1
, (7)

for i, j ∈ 1, 2, 3 with k1, k2 > 0, γ ≤ γ < γ + 1, γ ≥ 2. Furthermore we assume the existence
of a positive function ϑ(ei j) such that

∂ϑ

∂ei j
= 2ω

(̂
u, divxu, det

(
∂ui

∂x j

))
ei j(u) + δi jβ

(̂
u, divxu, det

(
∂ui

∂x j

))
divxu. (8)

We consider in this work a power-law type of fluids. For more details see [12].

§2. Preliminary results

We define φ(t) = et − t − 1 and φ2(t) = et2
− 1 the Young functions and by ψ(t) = (1 +

t) ln (1 + t) − t and ψ1/2(t) their complementary Young functions. The corresponding Orlicz
spaces are denoted by Lφ(Ω), Lφ2 (Ω), Lψ(Ω), Lψ1/2 (Ω). These are Banach spaces equipped
with a Luxembourg norm

‖u‖L f (Ω) = inf
h

{
h > 0;

∫
Ω

f
(
|u(x)|

h

)
dx ≤ 1

}
< +∞,
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where f stands for φ1, φ2, ψ, ψ1/2. Let C (Ω) be the set of bounded continuous functions
which are defined in Ω. We denote Cψ, Cφ, Cψ1/2 and Cφ2 the closure of C (Ω) in Lψ(Ω),
Lφ(Ω), Lψ1/2 (Ω) and Lφ2 (Ω), respectively. We have

(
Cφ (Ω)

)∗
= Lψ(Ω),

(
Cψ (Ω)

)∗
= Lφ(Ω),(

Cφ2 (Ω)
)∗

= Lψ1/2 (Ω),
(
Cψ1/2 (Ω)

)∗
= Lφ2 (Ω), where Cψ, Cφ, Cψ1/2 and Cφ2 are separable

Banach spaces.

Definition 1. (∆2 - condition) A Young function Φ satisfies the 42-condition (Φ ∈ 42) if and
only if there exists c > 0 and t0 ≥ 0 such that Φ (2t) ≤ cΦ (t) for every t > t0.

Definition 2. (Space of Radon measures) Let Ω be an open subset of RN with Lebsgue
measure. Consider the space E = Cc(Ω) the space of continuous functions with compact
support in Ω, equipped with the norm ‖u‖E = supx∈Ω |u(x)|. The dual space of E, denoted by
M(Ω), is called the space of Radon measures on Ω.

Since ψ, ψ1/2 satisfy the 42-condition then the following identity hold: Cψ (Ω) = Lψ(Ω),
Cψ1/2 (Ω) = Lφ2 (Ω). Let L∞w

(
QT ,M

(
RN2

))
denote the spaces of all weakly measurable map-

pings from QT into M
(
RN2

)
with finite L∞

(
QT ,M

(
RN2

))
norm. We call ν ∈ L∞

(
QT ,M

(
RN2

))
a weakly measurable map if and only if (x, t) →

(
νx,t, g(x, t)

)
is Lebesgue measurable in

QT for every g ∈ L1
(
QT ,Cc

(
RN2

))
where N is the dimension of space. We define by

Lp(Ω),W l,p(Ω) (resp. W l,p
0 (Ω)), 1 ≤ l, p < ∞, the usual Lebesgue space and Sobolev spaces.

By W−l,p′ we denote the dual space to W l,p
0 . We define Vk(Ω) as Vk(Ω) = Wk,2(Ω)∩W1,2

0 (Ω),
k ≥ 2.
Remark 1. For more details about Orlicz spaces see [11].

Definition 3. (Measure-valued solution) Let (%, u, ν) be such that

% ∈ L∞(I, Lψ), u ∈ L2(I,Vk(Ω)) ∩ Lγ(I,W1,γ
0 ), ν ∈ L∞w

(
QT ,M

(
RN2))

.

Assume also that the functions σi j, β
(
σ̂,Trσ, det (σ)

)
Trσ, ω

(
σ̂,Trσ, det (σ)

)
σi j, are ν-

integrable in RN2
(Trσ = σii) such that∫

RN2
σi j dνt,x(σ) =

∂ui

∂x j
, a.e. in QT .

Then, we define a measured-valued solution for the system (1) - (8) in the sense of DiPerna
[4], in the following way:

−

∫
QT

%ui
∂ϕi

∂t
dx dt −

∫
QT

%uiu jϕi, j dx dt −
∫

Ω0

%0u0ϕi(0) dx − λ

∫
QT

%ϕi,i dx dt

+

∫
QT

dx dt
(∫
RN2

β
(
σ̂,Trσ, det (σ)

)
Trσδi j + 2ω

(
σ̂,Trσ, det (σ)

)
σi jdνt,x (σ)

)
ϕi, j = 0,

(9)

for all ϕ ∈ C∞
(
Qt

)
, ϕ(t) ∈ W1,γ

0 (Ω) for any t ∈ I and ϕ(T ) = 0.

Remark 2. In Definition 3 the Young measures are defined for the gradient of the velocity
field. In the next sections the measures will be considered for the density and the velocity
field.
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Theorem 1. Let u0 ∈ Vk(Ω), k ≥ 3, %0 ∈ Cd(Ω), %0 > ε > 0, d = 1, 2, ... Let assumptions (6)
- (8) be satisfied with γ ≥ 2. Then, there exists (%, u) and a family of a probability measure
νx,t on RN2

with the following properties:
(i) ν ∈ L∞w

(
QT ,R

N2
)
,
∥∥∥νx,t

∥∥∥
M

(
RN2

) = 1, f or a.e. (x, t) ∈ QT ,

(ii) supp νx,t ⊂ R
N2
, f or a.e. (x, t) ∈ QT ,

(iii) u ∈ Lγ(I,W1,γ
0 (Ω)) ∩ Lγ

(
I,W1,α

0 (Ω)
)
, αγ > 3, α < 1,

(iv) % ∈ L∞(I, Lψ(Ω)) ∩ L2(I,W−1,2(Ω)),
(v) %u ∈ Lγ(I,W−α,γ

′

(Ω)), αγ > 3, α < 1, 1
γ

+ 1
γ′

= 1,
(vi) %uiu j ∈ Lγ(I,W−α,γ

′

(Ω)) and such that (%, u, ν) satisfies (9).

To prove the existence of measure-valued solutions we introduce the following approxi-
mation scheme (multipolar fluids) introduced by Nečas and Šilhavý (see [14]),

τi j =

k−1∑
s=0

τ(s,u)
i j ,

τ(s,u)
i j = τ(s,u,lin)

i j + S i j,

with τ(s,u,lin)
i j = (−1)s

(
µs

14
sdivxu δi j + 2µs

24
sei j(u)

)
.

The second law of thermodynamics requires additional stress tensors with the power on an
elementary surface dS τn

ii1...im j
∂mui

∂xi1 ...∂xim
n j, where n is the normal vector to the boundary defined

almost everywhere on ∂Ω. The higher stress tensors are defined as follows

τn
ii1...im j = Sym

 k−1∑
r=m

(−1)r+m 4r−m
∂mqr

iim

∂xi1 ...∂xim−1∂x j

 ,
where qs

i j = µs
1

(
∂ul

∂xl

)
δi j + 2µs

2ei j(u),

and symmetrization is taken with respect to (i1, ..., im). We assume that µs
1 and µs

2 are constants
and satisfy the bounds

µs
1 ≥ −

2
3
µs

2, µs
2 > 0, 0 ≤ s ≤ k − 2,

µk−1
1 > −

2
3
µk−1

2 , µk−1
2 > 0.

We denote

((u, w)) =

∫
Ω

 k−1∑
s=0

(
2µs

2
∂sei j(u)
∂xi1 ...∂xis

∂sei j(w)
∂xi1 ...∂xis

+ µs
1
∂serr(w)
∂xi1 ...∂xis

∂sell(u)
∂xi1 ...∂xis

 dx.

Moreover we assume
µs

1 > −
2
3
µs

2, (s = 0, ..., k − 2) .
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Under the previous assumptions System (1)-(2) can be rewritten in the following form:

∂%

∂t
+
∂ (%ui)
∂xi

= 0, in (0,T ) ×Ω, (10)

∂ (%ui)
∂t

+
∂
(
%uiu j

)
∂x j

−
∂τi j(u)
∂x j

= −λ
∂%

∂xi
, in (0,T ) ×Ω, (11)

with the initial data u (0) = u0, % (0) = %0 and boundary conditions u = 0 on ∂Ω × I and
[[u, w]] = 0 on ∂Ω × I, where

[[u, w]] =

k−1∑
m=1

∫
∂Ω

τn
ii1...im j

∂wm
i

∂xi1 ...∂xim
n j dS . (12)

Weak formulation of (11) reads: for all ϕ ∈ L2
(
I,Vk(Ω) ∩W1,γ

0 (Ω)
)
,

∫
QT

∂ (%ui)
∂t

ϕi dx dt −
∫

QT

%uiu jϕi, j dx dt +

∫ T

0
((u, ϕ)) dt

+

∫
QT

β

(̂
u, divxu, det

(
∂ui

∂x j

))
divxu

∂ϕi

∂xi
dx dt

+ 2
∫

QT

ω

(̂
u, divxu, det

(
∂ui

∂x j

))
ei j(u)

∂ϕi

∂x j
dx dt − λ

∫
QT

%
∂ϕi

∂xi
dx dt = 0. (13)

Let us formulate the existence and uniqueness results for the approximation scheme:

Lemma 2. Assume that u0 ∈ Vk(Ω) and %0 ∈ Cd
(
Ω
)
, where %0 > ε > 0 and d = 1, 2, ...

Let assumptions (6) - (8) be satisfied with k ≥ 3 and γ ≥ 2. Then, there exists at least
one solution (%, u) of (10) - (12) satisfying (13) such that % ∈ L∞ (I,W p,q(Ω)) where p =

min (d, k − 2) , 1 ≤ q ≤ 6 (N = 3) , 1 ≤ q < ∞ (N = 2) , ∂%
∂t ∈ L2

(
I,W p−1,q(Ω)

)
, u ∈

L2
(
I,Vk(Ω)

)
∩ L∞

(
I,Wk,2(Ω)

)
, ∂u
∂t ∈ L2 (QT ) , u ∈ Lγ

(
I,W1,γ

0 (Ω)
)
. Moreover, assuming that

ϑ(ei j) satisfying (8) is continuously differentiable in RN2
then there exists at most one solution

of the problem (10) - (13).

Proof. Applying the methods of characteristics to the continuity equations together with the
Galerkin approach to the momentum equation, we get global existence of the approximate
problem. For more details on the proof see [13]. �

In passing to the limit with higher viscosity, the most problematic point is to find a repre-
sentation in terms of∫

QT

β

(̂
uµ, divxûµ, det

(
∂ui

∂x j

))
uµi,iϕi,i dx dt + 2

∫
QT

ω

(̂
uµ, divxûµ, det

(
∂ui

∂x j

))
uµi, jϕi, j dx dt.

Let us follow the classical theory introduced by Ball [2].
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We define for each (x, t) ∈ QT a sequence ν j
x,t ≡ δ∇u j(x,t), where δx is the Dirac measure

at the point x ∈ RN2
,
(
∇uµ(x, t) ∈ RN2

)
and we put ν j : (x, t) ∈ QT → ν

j
x,t. Since {ν j} j is

uniformly bounded in L∞w
(
QT ; M

(
RN2

))
, thanks to the representation theorem, we get[

L1
(
QT ; Cc

(
RN2))]∗

≈ Lw
(
QT ; M

(
RN2))

.

In addition, thanks to the separability of ν j, we have ν ∈ L∞w
(
QT ; M

(
RN2

))
such that

ν j → ν, weakly − ∗ in L∞w
(
QT ; M

(
RN2))

.

Let us recall the following special case of the Ball theorem (see [2]).

Lemma 3. Let ∇v j : QT → R
N2

be uniformly bounded in Lγ (QT ) and let the continuous
function τ : RN2

→ R satisfy

c
∣∣∣σ̂∣∣∣γ ≤ τ (

σ̂,Trσ, detσ
)
≤ c

(
1 +

∣∣∣σ̂∣∣∣)γ−1
,

where γ > γ − 1 and

sup
j=1,2,...

∫
QT

η
(∣∣∣(σ̂,Trσ, detσ

)∣∣∣) dx dt < ∞,

with η a Young function. Then,
∥∥∥νx,t

∥∥∥ = 1, a.e. in RN2
and

τ
(
σ̂,Trσ, detσ

)
→

(
τ, νx,t

)
=

∫
RN2

τ
(
σ̂,Trσ, detσ

)
dνx,t (σ) ,

weakly - * in Lη (QT ).

Proof. Applying Lemma 3 with η (ξ) = ξγ/(γ−1), we get∫
QT

[
β
(̂
u, divσ, detσ

)]γ/(γ−1)
dx dt ≤

∫
QT

∣∣∣ σ̂γ∣∣∣ dx dt ≤ const,

which give us the measure-valued solution in the sense of DiPerna. �

§3. Relative entropy inequality

Let us denote byP
(
[0,∞) × RN

)
the set of probability measures on [0,∞)×RN . We introduce

the concept of dissipative measure-valued solution to the system (1) - (2) in the spirit of [8]
and [6].

Definition 4. We say that a parameterized measure
{
νt,x

}
(t,x)∈(0,T )×Ω,

ν ∈ L∞w
(
(0,T ) ×Ω;P

(
[0,∞) × RN

))
,

〈
νt,x; s

〉
≡ %,

〈
νt,x; v

〉
≡ u,

is a dissipative measure-valued solution of the compressible Navier-Stokes system (1) - (2)
in (0,T ) ×Ω, with initial condition ν0 and dissipation defectD with

D ∈ L∞ (0,T ) , D ≥ 0,
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if the following holds:
(i) Continuity equation. There exist a measure rC ∈ L1

(
[0,T ] ,M

(
Ω
))

and χ ∈ L1 (0,T )

such that for a.a. τ ∈ (0,T ) and every ψ ∈ C1
(
[0,T ] ×Ω

)
,∣∣∣∣〈rC (τ) ;∇xψ

〉∣∣∣∣ ≤ χ (τ)D (τ) ‖ψ‖C1
(
Ω
)

and∫
Ω

〈
νt,x; s

〉
ψ (τ, ·) dx −

∫
Ω

〈ν0; s〉ψ (0, ·) dx

=

∫ τ

0

∫
Ω

[〈
νt,x; s

〉
∂tψ +

〈
νt,x; sv

〉
· ∇xψ

]
dxdt +

∫ τ

0

〈
rC;∇xψ

〉
dt. (14)

(ii) Momentum equation.

u =
〈
νt,x; v

〉
∈ L2

(
0,T ; W1,2

0

(
Ω;RN

))
,

and there exists a measure rM ∈ L1
(
[0,T ] ,M

(
Ω
))

and ξ ∈ L1 (0,T ) such that for a.a. τ ∈

(0,T ) and every ϕ ∈ C1
(
[0,T ] ×Ω;RN

)
, ϕ|∂Ω = 0,∣∣∣∣〈rM (τ) ;∇xϕ
〉∣∣∣∣ ≤ ξ (τ)D (τ) ‖ϕ‖C1

(
Ω
) ,

and∫
Ω

〈νt,x; sv〉ϕ(τ, ·)dx −
∫

Ω

〈ν0; sv〉ϕ(0, ·)dx

=

∫ τ

0

∫
Ω

[
〈νt,x; sv〉∂tϕ + 〈νt,x; s(v ⊗ v)〉 : ∇xϕ + 〈νt,x; p(s)〉divxϕ

]
dxdt

−

∫ τ

0

∫
Ω

S
(̂
u, divxu, det

( ∂ui

∂x j

))
: ∇xϕ dx dt +

∫ τ

0
〈rM;∇xϕ〉dt. (15)

(iii) Energy inequality.∫
Ω

〈
νt,x; (

1
2

s|u|2 + P(s))
〉

dx +

∫ τ

0

∫
Ω

S
(̂
u, divxu, det

( ∂ui

∂x j

))
: ∇xu dx dt

+D(τ) ≤
∫

Ω

〈
ν0;

(1
2

s|u|2 + P(s)
)〉

dx, f or a.e. τ ∈ (0,T ), (16)

where P(s) = (1 + s) ln(1 + s) − s. Moreover, the following version of Poincare’s inequality
holds ∫ τ

0

∫
Ω

〈
νt,x; |v − u|2

〉
dxdt ≤ CD (τ) .

We introduce the relative entropy functional

E (%, u | r,U) =

∫
Ω

[
1
2
% |u − U |2 + P(%) − P′(r)(% − r) − P(r)

]
dx,
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with P(%) = (1 + %) ln(1 + %) − %. It is shown in [7] that any finite energy weak solution
(%, u) to the compressible Newtonian barotropic Navier-Stokes system satisfies the relative
entropy inequality for any pair (r,U) of sufficiently smooth test functions such that r > 0 and
U |∂Ω = 0. In the framework of dissipative measure-valued solution (in the spirit of [8] and
[6]) we define the functional

Emv (%, u, | r,U) ≡
∫

Ω

〈
νt,x;

1
2

s |v − U |2 + P(s) − P′(r)(s − r) − P(r)
〉

dx.

Theorem 4. Let
{
νt,x

}
(t,x)∈(0,T )×Ω with

ν ∈ L∞w
(
(0,T ) ×Ω;P

(
[0,∞) × RN

))
,

〈
νt,x; s

〉
≡ %,

〈
νt,x; v

〉
≡ u,

be a dissipative measure-valued solution to the compressible non-Newtonian system (1) -
(2) with the initial condition ν0 and dissipation defect D. Then, (s, v) satisfies the following
relative entropy inequality

Emv +

∫ τ

0

∫
Ω

S
(̂
u, divxu, det

( ∂ui

∂x j

))
: ∇(u − U) dx dt + D(τ)

≤

∫
Ω

〈
ν0,x;

(1
2

s|v − U(0, ·)|2
)

+ P(s) − P′(r0)(s − r0) − P(r0)
〉
dx

+

∫ τ

0
R(s, v, r,U)(t)dt, (17)

for a.a. τ ∈ (0,T ) and any pair of test functions (r,U) such that U ∈ C1
(
[0,T ] × Ω,RN

)
,

U |∂Ω = 0, r ∈ C∞c (QT ), r > 0, where

R(s, v, r,U)(t) = −

∫
Ω

(
〈νt,x; sv〉 ∂tU + 〈νt,x; sv ⊗ v〉 : ∇xU

)
dx

−

∫
Ω

(
〈νt,x; p(s)〉 divxU

)
dx +

∫
Ω

(
〈νt,x; s〉U∂tU + 〈νt,x; sv〉 · U · ∇xU

)
dx

+

∫
Ω

[〈
νt,x;

(
1 −

s
r

)〉
p′(r)∂tr − 〈νt,x : sv〉 ·

p′(r)
r
∇xr

]
dx

− 〈rM ; ∇xU〉 +

∫
Ω

〈
rC ;

1
2
∇x|U |2 − ∇xP′(r)

〉
dx. (18)

Proof. First using the continuity equation (14) with test function 1
2 |U |

2, we get∫
Ω

1
2
〈νt,x; s〉 |U |2(τ, ·) dx −

∫
Ω

1
2
〈ν0; s〉 |U |2(0, ·) dx

=

∫ τ

0

∫
Ω

[
〈νt,x; s〉U∂tU + 〈νt,x; sv〉 · U · ∇xU

]
dx dt +

∫ τ

0
〈rC;

1
2
∇xU〉 dt, (19)

provided U ∈ C1
(
[0,T ] ×Ω;RN

)
.
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Next, testing (14) by P′(r), we get∫
Ω

〈νt,x; s〉 P′(r)(τ, ·) dx −
∫

Ω

〈ν0; s〉 P′(r)(0, ·) dx

=

∫ τ

0

∫
Ω

[
〈νt,x; s〉 P′′(r)∂tr + 〈νt,x; sv〉 P′′(r) · ∇xr

]
dx dt +

∫ τ

0
〈rC;∇xP′(r)〉 dt

=

∫ τ

0

∫
Ω

[
〈νt,x; s〉

p′(r)
r

∂tr + 〈νt,x; sv〉
p′(r)

r
· ∇xr

]
dx dt +

∫ τ

0
〈rC;∇xP′(r)〉 dt, (20)

provided r ∈ C1
(
[0,T ] ×Ω;RN

)
.

Furthermore using (15) tested by U we obtain∫
Ω

〈νt,x; sv〉U(τ, ·) dx −
∫

Ω

〈ν0; sv〉U(0, ·) dx

=

∫ τ

0

∫
Ω

[
〈νt,x; sv〉 ∂tU + 〈νt,x; s(v ⊗ v)〉 : ∇xU + 〈νt,x; p(s)〉divxU

]
dx dt

−

∫ τ

0

∫
Ω

S
(̂
u, divxu, det

( ∂ui

∂x j

))
: ∇xU dx dt +

∫ τ

0
〈rM;∇xU〉 dt, (21)

for any U ∈ C1
(
[0,T ] ×Ω;RN

)
, U |∂Ω = 0. Summing up (19) - (21) and (16), we get (17) -

(18). �
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