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STEADY-STATE ANALYSIS OF THE
SINGLE VACATION PH/MS P/1/∞ QUEUE

USING ROOTS
Abhijit Datta Banik, Mohan L. Chaudhry and Florin Avram

Abstract. We consider an infinite-buffer single-server queue where inter-arrival times are
phase-type (PH), the service is provided according to Markovian service process (MS P),
and the server may take single, exponentially distributed vacations when the queue is
empty. The proposed analysis is based on roots of the associated characteristic equation of
the vector-generating function (VGF) of system-length distribution at a pre-arrival epoch.
At the end, we present numerical results in the form of a table to show the effect of model
parameters on the system-length distribution at a pre-arrival epoch.
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§1. Introduction

In recent times, queueing models with non-renewal arrival and service processes have been
used to model networks of complex computer and communication systems. Traditional
queueing analysis using Poisson processes is not powerful enough to capture the correlated
nature of arrival (service) processes. The performance analysis of correlated type of arrival
processes may be done through some analytically tractable arrival process viz., Markovian
arrival process (MAP), see Lucantoni et al. [12]. The MAP has the property of both time
varying arrival rates and correlation between inter-arrival times. To consider batch arrivals of
variable capacity, Lucantoni [11] introduced batch Markovian arrival process (BMAP). The
processes MAP and BMAP are convenient representations of a versatile Markovian point
process, see Neuts [13] and Ramaswami [14]. Like the MAP, Markovian service process
(MS P) is a versatile service process which can capture the correlation among the succes-
sive service times. Several other service processes, e.g., Poisson process, Markov modulated
Poisson process (MMPP) and phase-type (PH) renewal process can be considered as special
cases of MS P. For details of MS P, the readers are referred to Bocharov [3] and Albores and
Tajonar [1]. The analysis of finite-buffer G/MS P/1/r (r ≤ ∞) queue has been performed
by Bocharov et al. [4]. Queueing with multiple servers such as GI/MS P/c/r has been an-
alyzed by Albores and Tajonar [1]. Gupta and Banik [10] analyzed GI/MS P/1 queue with
finite- as well as infinite-buffer capacity using a combination of embedded Markov chain and
supplementary variable method.

In this paper, we carry out the analysis of the PH/MS P/1/∞ queue with exponential
single vacation through the calculation of roots of the denominator of the underlying vector
generating function of the steady-state probabilities at pre-arrival epoch (see Equations (20)
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and (21)). In this connection, the readers are referred to Chaudhry et al. [7, 8, 6], Tijms
[16] and Chaudhry et al. [9] who have used the roots method. The roots can be easily found
using one of the several commercially available packages such as Maple and Mathematica.
The algorithm for finding such roots is available in some papers, e.g., see Chaudhry et al.
[9]. The purpose of studying this queueing model using roots is that we obtain computa-
tionally simple and analytically closed form solution to the infinite-buffer PH/MS P/1 queue
with the vacation time following exponential distribution. It may be remarked here that the
matrix-geometric method (MGM) uses iterative procedure to get steady-state probabilities at
the pre-arrival epochs. Further, it is well known that for the case of the MGM it is required
to solve the non-linear matrix equation with the dimension of each matrix in this equation
being the number of service-phases involved in a PH/MS P/1 queue. In the case of the roots
method, we do not have to investigate the structure of the transition probability matrices
(TPM) at the embedded pre-arrival epochs. It may be mentioned here that the basic idea of
correlated service was first introduced by Chaudhry [5]. Further, it may be remarked here
that the analysis of the infinite-buffer queues with renewal input and exponential service time
under exponential server vacation(s) has been carried out by Tian and Zhang [15], see Chap-
ter 4. The queueing model that we are going to consider has non-renewal service (MS P) and
exponential single vacation time. Finally, it may be remarked here that we perform steady-
state analysis of a stable PH/MS P/1 queueing system, i.e., under the assumption that the
traffic intensity (which is the mean number of customer arrival during an average service
time) is strictly less than one. Obviously this assumption is not a practical one because many
queueing situations face instability due to the traffic intensity is more than or very close to
one. One may be interested in the analysis of such type of instable queues in future using a
different methodology than the one used in this paper. Therefore, further research in the close
to instability domain is necessary.
Contents. The paper is organized as follows. In Section 2 we give the description of the
model. Section 3 computes the vector generating function of the number of customers served
during an inter-arrival time (see Equation (9)), a crucial quantity which applies to the model
without vacation as well, and whose computation is the main difficulty. Section 4 concerns
the model with vacations, whose effect is quantized in (12), and gives the vector generating
function of the steady-state probabilities at pre-arrival epochs (see equation (17), where (12)
intervenes in the numerator). This section further details the application of the roots method
in our case. In section 5 numerical results have been presented. In addition, important per-
formance measure (mean system-length and mean sojourn time), system-length distributions
at arbitrary- and post-departure-epoch, and expected busy and idle periods are discussed in
an internet supplement see Banik et al. [2].

§2. Model description

We consider a single-server infinite-buffer queueing system with the server’s single vacation.
The inter-arrival time of customers, the service time of a customer and the vacation time of
the server are represented by the generic random variables (r.v.’s) A, S , and V , respectively.
Let FX(x) denote the distribution function (D. F.) of the random variable X with fX(x) and
f ∗X(s) the corresponding probability density function (p.d.f.) and Laplace-Stieltjes transform
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(LST), respectively. The inter-arrival time A is assumed to have a general distribution with
p.d.f. fA(x), D. F. FA(x) and LST f ∗A(s).
Arrivals. The inter-arrival times are assumed to be independent and identically-distributed
(i.i.d.) random variables and they are independent of the service process as well as vacation
time. The inter-arrival time distribution PH is an important special case of general distribu-
tion as the distribution possesses nice vector and matrix form representation. Several proba-
bility distributions such as Earlang, hyper-exponential, generalized Earlang, Coxian etc. can
be treated as special cases of PH-distribution. It may be noted here that PH-distribution is
a special case of general distribution. If the inter-arrival times follow PH-type distribution
with irreducible representation (α,T), where α and T are a vector and a matrix of dimension
1 × η and η × η, respectively, the p.d.f. and D.F. of inter-arrival times are given by

FA(x) = 1 − α eTxeη, for x ≥ 0, (1)

and fA(x) = −α eTxTeη = α eTxT0, for x > 0, (2)

where T0 is a non-negative vector and satisfies Teη + T0 = 0 and eη is an η × 1 vector with
all its elements equal to 1. Throughout the paper we write a subscript as the dimension of the
column vector e and sometimes we write e by dropping its subscript. The mean inter-arrival
time during a normal busy period is given by

1
λ

= α

∫ ∞

0
xeTx dx(−T)eη = −α(T)−1eη. (3)

Services. The customers are served singly according to the continuous-time Markovian ser-
vice process (MS P) with matrix representation (L0, L1). The MS P is a generalization of the
Poisson process where the services are governed by an underlying m-state Markov chain. For
more details on MS P, the readers are referred to recent papers by Chaudhry et al. [7, 6].
Let N(t) denote the number of customers served in t units of time and J(t) the state of the
underlying Markov chain at time t with its state space {i : 1 ≤ i ≤ m}. Then {N(t), J(t)} is a
two-dimensional Markov process with state space {(`, i) : ` ≥ 0, 1 ≤ i ≤ m}. Average service
rate of customers µ? (the so called fundamental service rate) of the stationary MS P is given
by µ? = πL1e, where π = [π1, π2, . . . , πm] with π j denoting the steady-state probability of
servicing a customer in phase j (1 ≤ j ≤ m). The stationary probability row-vector π can be
calculated from πL = 0 with πe = 1, where L = L0 + L1. The customers are served singly
according to a MS P with steady-state mean service time 1/µ∗. The traffic intensity is given
by ρ = λE(S ) = λ/µ∗ which is independent of the vacation process.
Vacations. The server is allowed to take a single vacation whenever the system becomes
empty. On return from a vacation if the server finds the system nonempty he will serve the
customers present in the queue, otherwise the server waits for a customer to arrive and the
system continues in this manner. For an exponential single vacation time represented by the
r.v. V , the LST, p.d.f. and D.F. are given as follows:

f ∗V (s) =
γ

γ + s
, fV (x) = γe−γx, FV (x) = 1 − e−γx, (4)

where 1/γ (> 0) is assumed as the mean vacation time. The vacation times are independent
of the inter-arrival time as well as of the service processes.



34 Abhijit Datta Banik, Mohan L. Chaudhry and Florin Avram

§3. The vector generating function of the number of customers served
during an inter-arrival

Let us denote by {P(n, t) : n ≥ 0, t ≥ 0} as the m × m matrix whose (i, j)th element is
the conditional probability defined as Pi, j(n, t) = Pr{N(t) = n, J(t) = j|N(0) = 0, J(0) =

i}, 1 ≤ i, j ≤ m. Using probabilistic arguments, we obtain the following system of matrix
differential-difference equations:

d
dt

P(0, t) = P(0, t)L0 (5)

d
dt

P(n, t) = P(n, t)L0 + P(n − 1, t)L1, n ≥ 1, (6)

with P(0, 0) = Im and P(n, 0) = 0 , n ≥ 1, where Im is the identity matrix of order m×m. Let
us define the matrix-generating function P∗(z, t) as

P∗(z, t) =

∞∑
n=0

P(n, t)zn = eL(z)t, |z| ≤ 1, (7)

see Chaudhry et al. [6], where L(z) = L0 + L1z.
Let S(n) (n ≥ 0) denote the matrix of order m × m whose (i, j)th element represents

the conditional probability that during an inter-arrival period n customers are served and the
service process passes to phase j, provided at the initial instant of the previous arrival epoch
there were at least n customers in the system and the service process was in phase i. Then

S(n) =

∫ ∞

0
P(n, t)dFA(t), n ≥ 0. (8)

If S(z) is the matrix-generating function of S(n), and S i, j(z) (1 ≤ i, j ≤ m) are the elements of
S(z), then multiplying (8) by zn, |z| ≤ 1 and summing from n = 0 to∞, we get

S(z) =

∞∑
n=0

S(n)zn = lim
N→∞

N∑
n=0

∫ ∞

0
P(n, t)zndFA(t) =

∫ ∞

0
lim

N→∞

N∑
n=0

P(n, t)zndFA(t)

=

∫ ∞

0
P∗(z, t)dFA(t) =

∫ ∞

0
eL(z)t fA(t)dt = f ∗A(−L(z)), (9)

where we have interchanged limit and integration on the first lign using element-wise the
dominated convergence theorem and the fact that dFA(t) is a probability measure. Indeed, it
suffices to check for the (i, j)-th’s component that

|

N∑
n=0

Pi, j(n, t)zn| ≤

∞∑
n=0

Pi, j(n, t) = Pi, j[N(t) < ∞] ≤ 1.

When inter-arrival time distributions are of PH-type having the representation (α,T), S(z)
is given by [8]:

S(z) = (Im ⊗ α)(L(z) ⊕ T)−1(Im ⊗ Teη), (10)
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with L(z) ⊕ T = (L(z) ⊗ Iν) + (Im ⊗ T), where ⊕ and ⊗ are used for Kronecker product and
sum, respectively. Knowing that each element of L(z) is a polynomial in z, each element of
L(z)⊕T is also a polynomial in z and hence the determinant of (L(z)⊕T) is a rational function
in z. Thus, from the above expression for S(z), we can immediately say that each element
of S(z) is a rational function in z with the same denominator. One may note that in case the
degree of the polynomials in each element of S(z) is very high, it may be difficult or time
consuming to calculate the roots of the characteristic equation

det[Imz − S(z)] = 0. (11)

This difficulty may be minimized by calculating S(z) via S(z) = limN→∞
N∑

n=0
Snzn, where S(n)

may be obtained as proposed in [6, 11].

§4. Stationary system-length distribution of GI/MS P/1/∞ queue at
pre-arrival epoch

We consider a GI/MS P/1/∞ queueing system with single vacation as described above. In
the following subsections we obtain steady-state distributions for this queueing system at
different epochs considering ρ < 1.

Let ω denote the probability that the remaining vacation time (V̂ , say) exceeds an inter-
arrival time A, then

ω =

∫ ∞

0
Pr(A < V̂ |A = x). fA(x) dx =

∫ ∞

0
Pr(V̂ > x). fA(x) dx

=

∫ ∞

0
(1 − FV̂ (x)) fA(x) dx = f ∗A(γ). (12)

Remark 1. Note similarity of this equation with (9).
Consider the system just before arrival epochs which are taken as embedded points. Let

t0, t1, t2, ... be the time epochs at which arrivals occur and t−k the time instant before tk. The
inter-arrival times Tk+1 = tk+1 − tk, k = 0, 1, 2, . . . are i.i.d.r.v.’s with common distribution
function FA(x). The state of the system at t−k is defined as ζk = {Nt−k , Jt−k , ξt−k } where Nt−k is
the number of customers n (≥ 0) present in the system including the one currently in service.
Whereas Jt−k = { j}, 1 ≤ j ≤ m, denotes phase of the service process and ξt−k = l = 0 or 1
indicates that the server is on vacation (l = 0) or busy (l = 1). In the limiting case, we define
the following probabilities:

π−j,0(n) = lim
k→∞

P{Nt−k = n, Jt−k = j, ξt−k = 0}, n ≥ 0, 1 ≤ j ≤ m,

π−j,1(n) = lim
k→∞

P{Nt−k = n, Jt−k = j, ξt−k = 1}, n ≥ 0, 1 ≤ j ≤ m.

Let π−0 (n) and π−1 (n) be the row vectors of order 1 ×m whose j-th components are π−j,0(n) and
π−j,1(n), respectively.

Observing the state of the system at two consecutive embedded points, we have an em-
bedded Markov chain whose state space is equivalent to Ω = {(k, j, 0), k ≥ 0, 1 ≤ j ≤
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m, } ∪ {(n, j, 1), n ≥ 1, 1 ≤ j ≤ m}. The one-step transition probability matrix (TPM) of
the above Markov chain P may be obtained. To obtain the vector-generating function (VGF)
of the distribution of the number of customers in the system at pre-arrival epochs, we write
π− = π−P, where
π−=[π−0 (0),π−0 (1),π−1 (1),π−0 (2),π−1 (2), · · · · · · ]. Therefore, we have the following system of
vector difference equations

π−0 (0) =

∞∑
k=0

π−0 (k)
(
(1 − ω)V∗k+1 − C∗k+1

)
+

∞∑
n=0

π−1 (n)
(
(1 − ω)V∗n+1

)
, (13)

π−0 (n) = π−0 (n − 1)ωIm, n ≥ 1, (14)

π−1 (0) =

∞∑
k=0

π−0 (k)C∗k+1 +

∞∑
n=0

π−1 (n)
(
ω(V∗n+1 +

n∑
j=0

V j) + (1 − ω)
n∑

j=0

V j −

n∑
i=0

Si

)
,

(15)

π−1 (n) =

∞∑
k=n−1

π−0 (k)(1 − ω)Vk−n+1 +

∞∑
j=n−1

π−1 ( j)S j−n+1, n ≥ 1, (16)

where the matrices V j ( j ≥ 0), V∗k (k ≥ 1), C∗l (l ≥ 1) may be obtained analogous to S∗k (k ≥ 1)
defined in [6], and ω is defined as the probability that remaining vacation time (V̂) exceeds an
inter-arrival time (A), see Equation (12). Multiplying (16) by zn, summing from n = 1 to ∞,
after adding (15) and using the vector-generating function π−∗1 (z) =

∑∞
n=0 π

−
1 (n)zn, we obtain

π−∗1 (z) =

(∑∞
j=0

∑∞
i= j+1 π

−
0 ( j)(1 − ω)Viz j−i+1 + Y

)
Ad[Im − zS(z−1)]

det[Im − zS(z−1)]
, (17)

where Y =
∑∞

k=0 π
−
0 (k)C∗k+1 +

∑∞
n=0 π

−
1 (n)

(
ω(V∗n+1 +

∑n
j=0 V j) + (1 − ω)

∑n
j=0 V j −

∑n
i=0 Si

)
and Ad[Im − zS(z−1)] is the adjoint of the matrix [Im − zS(z−1)]. For further analysis, we
first determine an analytic expression for each component of π−∗1 (z). Each component π−∗j,1(z)
defined as π−∗j,1(z) =

∑∞
n=0 π

−
j,1(n)zn of the VGF π−∗1 (z) given in (17) being convergent in |z| ≤ 1

implies that π−∗1 (z) is convergent in |z| ≤ 1. As each element of S(z−1) is a rational function,
(see Chaudhry et al. [6]) each element of det[Im − zS(z−1)] is also a rational function and we
assume that det[Im − zS(z−1)] =

d(z)
ϕ(z) . Equation (17) can be rewritten element-wise as

π−∗j,1(z) =
ξ j(z)
d(z)

, 1 ≤ j ≤ m, (18)

where ξ j(z) is the j-th component of
(∑∞

j=0
∑∞

i= j+1 π
−
0 ( j)(1 − ω)Viz j−i+1 +

∑∞
k=0 π

−
0 (k)C∗k+1

+
∑∞

n=0 π
−
1 (n)

(
ω(V∗n+1+

∑n
j=0 V j)+(1−ω)

∑n
j=0 V j−

∑n
i=0 Si

))
Ad j[Im−zS(z−1)]ϕ(z). To evaluate

the vector in the numerator of equation (17), we show that the equation det[Imz−S(z)] = 0 has
exactly m roots inside the unit circle |z| = 1, see Chaudhry et al. [7]. Let these roots be γi (1 ≤
i ≤ m). Now, consider the zeros of the function d(z). Since the equation det[Imz − S(z)] = 0
has m roots γi inside the unit circle, the function det[Im − zS(z−1)] has m zeros 1/γi outside



Steady-state analysis of the single vacation PH/MS P/1/∞ queue using roots 37

the unit circle |z| = 1. As π−∗j,1(z) is an analytic function of z for |z| ≤ 1, applying the partial-
fraction method, we obtain

π−∗j,1(z) =

m∑
i=1

ki j

1 − γiz
, 1 ≤ j ≤ m, (19)

where ki j are constants to be determined. Now, collecting the coefficient of zn from both sides
of (19), we have

π−j,1(n) =

m∑
i=1

ki jγ
n
i , 1 ≤ j ≤ m, n ≥ 0. (20)

Now we assume π−0 (0) as π−0 (0) =

[
b1, b2, . . . , bm

]
, where b1, b2, . . . , bm are m arbitrary posi-

tive constants to be computed as described below. Hereafter, we substitute π−0 (0) from above
assumption into the Equation (14) and obtain

π−0 (n) = π−0 (0)ωnIm =

[
b1, b2, . . . , bm

]
ωnIm, n ≥ 0. (21)

After this we find the constants ki j’s (1 ≤ i ≤ m, 1 ≤ j ≤ m) and bi (1 ≤ i ≤ m) by solving
m(m + 1) linear simultaneous equations along with the following normalizing condition:

m∑
j=1

π−∗j,1(1) +

∞∑
n=0

m∑
j=1

π−j,0(n) =

m∑
j=1

m∑
i=1

ki j

1 − γi
+

m∑
j=1

b j

1 − ω
= 1. (22)

The set of simultaneous linear equations are obtained from equating the corresponding com-
ponents of the vector Equations (13), (15), and (16) after substituting π−1 (n) and π−0 (n) from
Equations (20) and (21), respectively.

§5. Numerical results and discussion

To demonstrate the applicability of the results obtained in the previous sections, some numer-
ical results have been presented in two self explanatory tables. At the bottom of the tables,
several performance measures are given.

We have carried out extensive numerical work based on the procedure discussed in this pa-
per by considering different service matrices MS P (L0, L1) and phase-type inter-arrival time
distribution PH(α,T). All the calculations were performed on a PC having Intel(R) Core 2
Duo processor @1.65 GHz with 8 GB DDR2 RAM using MSPLE 18. Further, though all
the numerical results were carried out in high precision, they are reported here in 6 decimal
places due to lack of space.
In Table 1, we have presented various epoch probabilities for a PH/MS P/1/∞ queue with
exponential single vacation using our method described in this paper. Vacation time is fol-
lowing exponential distribution with average number of vacations per unit of time is γ = 1.8.
Inter-arrival time is PH-type and its representation is given by
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Pre-arrival π−j,0(n) & π−j,1(n)
π−j,0(n) j = 1 j = 2 j = 3 j = 4

∑m=4
j=1

0 0.394155 0.001935 0.007826 0.001078 0.404994
1 0.012922 0.000063 0.000256 0.000035 0.013277
2 0.000424 0.000002 0.000008 0.000001 0.000435
3 0.000014 0.000000 0.000000 0.000000 0.000014
4 0.000000 0.000000 0.000000 0.000000 0.000000
5 0.000000 0.000000 0.000000 0.000000 0.000000
...

...
...

...
...

...

sum 0.407514 0.002001 0.008091 0.001114 0.418720
π−j,1(n) j = 1 j = 2 j = 3 j = 4

∑m=4
j=1

0 0.418304 0.003215 0.006170 0.000057 0.037466
1 0.013560 0.007230 0.009807 0.006868 0.037466
2 0.001028 0.007186 0.007215 0.006678 0.037466
3 0.000530 0.006045 0.005157 0.003092 0.037466
4 0.000730 0.005106 0.004122 0.001808 0.037466
5 0.000721 0.004344 0.003459 0.001355 0.037466
...

...
...

...
...

...

sum 0.439280 0.058473 0.056044 0.027481 0.581279

Table 1: System-length distributions at a pre-arrival epoch.

α =
[
0.22 0.33 0.45

]
, T =

−2.823 0.0 2.812
3.542 −2.942 1.000
1.710 0.0 −2.240

 with λ = 0.259558.

The MS P matrices as

L0 =


−3.69939 0.01276 0.00572 0.0
0.01012 −0.55759 0.0 0.00682

0.0 0.02343 −0.53152 0.48730
0.00649 0.55363 0.0 −0.58531

 ,

L1 =


3.65748 0.01727 0.0 0.00616
0.01353 0.00517 0.52195 0.0
0.00924 0.0 0.0 0.01155
0.00561 0.0 0.00847 0.01111

 ,
with stationary mean service rate µ∗ = 1.121972, lag-1 correlation coefficient 0.618173 be-
tween successive service times and π =

[
0.264645 0.253046 0.254961 0.227348

]
so that ρ = λ/(µ∗) = 0.231341.
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