Monograffas Matematicas Garcia de Galdeano 41, 1-9 (2018)

SCHAUDER ESTIMATES FOR DISCRETE
FRACTIONAL INTEGRALS

Luciano Abadias, Marta de Ledn-Contreras and José L. Torrea

Abstract. In this note we focus on the discrete fractional integrals as a natural continua-
tion of our previous work about nonlocal fractional derivatives, discrete and continuous.
We define the discrete fractional integrals by using the semigroup theory and we study the
regularity of discrete fractional integrals on the discrete Holder spaces, which it is known
in the differential equations field as the discrete Schauder estimates.
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§1. Introduction

Fractional calculus extends the definitions of derivatives and integrals to noninteger orders.
It was born in 1695, with a letter from L’ Hopital to Leibniz, where he asked what would be
the derivative of order 1/2. After this moment, a lot of authors have worked in this field, and
in the last century, the interest in fractional operators and fractional differential equations has
grown exponentially because of the big amount of applications it has.

In this note we will focus on discrete fractional operators, in particular on the discrete
fractional integrals as a continuation of our recent work [2]. We will define the discrete
fractional integrals by the semigroup theory approach and we will take some advantages of
the method to get some regularity results. This point of view to treat discrete fractional
operators has been recently used in [5],[6] and [7], among others works. Of course, in the
last years the discrete fractional integrals have also been considered in a lot of papers (see
for instance [1, 3, 8] and references therein), but not from the point of view of the semigroup
theory as fractional powers.

For f : Z — R, we define “the discrete derivative from the right” and “the discrete
derivative from the left” as the operators given by the formulas

Orightf (W) = f(n) — f(n + 1) and Sieref(n) = f(n) — f(n—1).

As we did in [2], we shall use semigroup language as an alternative approach to discrete
fractional integrals. Given the function G,(n) = e”nﬁ!, n € Ny, we prove in [2, Proposition
2.2] that the operators

T f) = Y Gpfon+j), and T, fm) = ) G(Dftn—j),  t>0,neZ.
J=0 =0

are markovian semigroups on £”(Z), 1 < p < oo, whose infinitesimal generators are —0rignt
and —0jef, respectively. In addition, we proved that u(n,t) = T, f(n) solves the first order
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Cauchy problem
Ou(n, 1) + Orighit(n, 1) =0, n€Z,t>0,
u(n,0) = f(n), nez,

and v(n, t) = T,_ f(n) satisfies the analogous Cauchy problem for Jjef.
We recall to the reader the following Gamma function formulas for an operator L,

1 o0 dt 1 o dt
L= f (et - 1) and L= — f et
T(—a) Jo fl+a T Jo -

tL

where 0 < @ < 1 and e™** is the associated semigroup, see [4, 9, 10, 12]. In particular, we
have that the powers of order « of the discrete derivatives can be written by

1 Tt -
(Oright)” f(n) = ) fo . f(:)m f(n)dt, O<a<l,

and

1 Sl
o)™ ) = o fo S0 0 <<t )

whenever the integrals converges, and the corresponding formula for (8je)%, —1 < @ < 1.

In order to get regularity results for the discrete fractional integrals in a more general
setting, we will consider our operators on a mesh of step length 4 > 0 instead of the integers
mesh, that is, our functions will be defined on Z, = {jh : j € Z}, for h > 0. Hence, for
u: Zy — R, with h > 0, the first order difference operators on Z,, are given by

u(hn) — u}(lh(n + 1))’ Sregui(hn) = u(hn) — u}ih(n - 1))’

In [2] we also prove that { Tﬁ,t},zo are the associated semigroups on £7(Zy,).

The main results of this note are the discrete Schauder estimates for the discrete fractional
integrals. Schauder estimates are very useful in the field of differential equations because
they concern the regularity of solutions to partial differential equations. Recently, Schauder
estimates have been used to get the regularity of fractional operadors in the adapted Holder
spaces, see for instance [11].

In our case, we need some special discrete Holder spaces, called C];’ﬁ . These spaces were
introduced in [7]. To see the definition of these spaces, see Section 3.

Orighttt(hn) = nez.

Theorem 1 (Discrete Schauder estimates). Let 0 < S,a < 1, and u € {_, ), see (4).
(i) Letu € C,” and a + B < 1. Then (8ign)~“u € C,*** and

I gn0 ™ ulleases < Cllulos.

(ii) Letu € Cg’ﬁ and a + 8 > 1. Then (ign) "u € C;l’ﬁw_] and

||(6right)_au||c;’ﬁ+"*1 < Cllullcos.

(iii) Letu € Ci’ﬁ and assume that k + 8 + a is not an integer. Then (Sggn) u € Cfl’s where |
is the integer part of k + B+ aand s=k++a — L
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(iv) Let u € €. Then (Srign) “u € Cg»“ and
”(5right)7au||cg,n < C“u”oo

The positive constants C are independent of h and u.

§2. The approach via semigroup theory.

Let @ € R. Along this paper we denote

ale+1)---(@+m-1)
m!

and A™(0) = 1. Note that if @ € R\ {0,~1,-2,...} we have that A="(m) = ("**"") for
m € Nj. Here we highlight some properties of this kernel. Also, if 0 < a@ < 1, then
A% is decreasing as a function of n, while if -1 < @ < 0, we have )" A™*(n) = 0, so
Dot AT(n) = —1.

Also, the kernel (A™%(n))nen, could be defined by the generating function, that is,

= 1
ZA—“(n)z" =— |Zd<1,
n=0 (] - Z)a

A %@m) = , mEeEN,

and therefore we have

A—(‘”ﬁ)(n) = Z A %n— j)A_'B(j)’ a,B €R, neN,. 2
=0
In the following, we will use the asymptotic behaviour of the sequences A™. It is known
that for every @ e R\ {0,-1,-2,...},

1 1
A_a(l’l) = m (1 + O(Z))’ neN, 3)

see [13, Vol.I, p.77, (1.18)]. In the case @ € {0,—-1,-2,...}, A™¥(n) = 0 for n > —a. To see
more properties of {A™"(n)}uen, in a general setting, see [13].

As it was done in [7], we also need to consider our functions in a particular space in order
to assure the convergence of our operators. For 0 < a < 1, we define the space {_, as
follows:

- +n)h
€a,h={u:Zh—>R:foreveryneZ,ZM<oo}, 4)
m=0
Hence, by using (1), for 0 < @ < 1, and f € {_,;, we have

| o B S w gtgita g
o "0 = s [ = Y e [ S
=0

t-a jT(a) t

I'(a))!

m=n

(o] F o (o) 0
=3 fn DR N Ao+ fy= S A = mfm),
j=0 j=0
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where the interchange of the sum and the integral is justified because of the integral converges
absolutely. By a similar way we also get

Ger) ™ fm) = D A (Df == Y A= m)f(m).
j=0

m=—oo

Observe that, as we did in [2], by proceeding similarly we get

n

Ggh)" F(m) = )" A" m =) fm), @) f(n) = D" A% =m)f(m), neNy.

m=—00

Now we will consider our functions on Z;, = hZ, for h > 0. Let u : Z;, — R. Then, for
0 < a < 1, we can write

(Seigh) “(nh) = " A= (m = myu(mh),  Gen) "u(uh) = K " A (= myu(mh), (5)

1 < 1 <
Grign) " unh) = = 3" A”(m — mu(mh) and  (Gi)"unh) = = > A"(n ~ myu(mh), (6)
m=n Jj=—c0

whenever the series converge.
In general, for any a > 0, it is defined

(6righl)au = (6right)m(6right)a_mu’ (5right)_(yu = (6right)_m(6right)_(a_m)u»

where m = [@]. In addition, in our case, by (2) we have that formulas (5) and (6) are valid for
every @ > 0. Also, by (2) we have

(Sright)”" (right) "u(nh) = u(nh), n € Z,u € t7(Zy).
Furthermore, for a,8 € R, we have
(Srigh)” Brign) u(nh) = (Srign)*Pulnh), n €z,

for u such that the series involved in the identity converge.

§3. Regularity results of Discrete Fractional Integrals

Following the notation in [2] and [7], for [, s € Ny, we denote 6£};ht ot \= (5rigm)[ (Olert)’.

Definition 1. ([7, Definition 2.1]). Let 0 < 8 < 1 and k € Ny. A function u : Z, — R belongs
. .. kB -
to the discrete Holder space C," if

s . s
(6% Loy = su |6righl,leflu(~]h) - 6righl,leftu(hm)| ‘o
right,leftu CZ‘B - m;; hﬁ'] _ m|ﬁ

for each pair [, s € Ny such that / + s = k. The norm in the spaces Cz’ﬁ is given by

ls

Ls
right,left i

u|| -+ = max sup |0 u(mh)| + max[o u 0s.
I chﬁ I+s<k meIZ?| (mh)| l+s=k[ right,left ]C/[zuj
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For simplicity, we only write the following theorem for (dyion;)™ since it is analogous for
(Brer) ™.
To prove this theorem we need a lemma about the kernel A™.

Lemma2. 1. Forevery j€Ny anda € R, A(j + 1) = A=%(j) = A=@D(j + ).

2. Foreveryn,l€Z, withn >, and0) < a < 1,
n—1

Z(A‘”(m —n) = A m 1)) — Z A~ m—1) = 0.

m=l

Proof. At first we prove (1). Observe that A=(1) — A™*(0) =@ — 1 = A=@D(1). Let j € N.
‘We have that

A+ D =-ATO) =

ale+1)...(@a+j-1) a'+j_1 _(a+j-D!fa-1

j! j+1 Co(a-DIt i+l
3 I'j+a)  a—(e-1),;
= GiDle-n A UTh

Now we prove (2). Let n,l € Z, withn > [, and 0 < @ < 1. By using the identity in (1)
we obtain

Z(A"’(m —n) = A m—1) = Z(A’”(m ) =AY m—-m—-1))+ A m—-—1)+...

m=n

+ A m=1—1)= A%(m - 1))

= D AP — (= 1) = A D= (= 2) =+ = AV m - D))

m=n

Again, as ), A"@ D — k) = 0, we have that

m=k

= 3 A = (- 1) = AV (0) = A(0)

m=n

- Z A Dm - -2)) = A7D0) + A7 (1)

m=n

- Z A D=1 = A" DO)+ AP+ + AP -1 - 1.
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Thus, using again identity on (1) we get

DA Gm =) = A — 1)

=(m-DAO0)+(n—-I-DA DD+ + A @D -1-1)

n—1

=D A m=D,

m=

~

and the result follows. O

Now we can prove Theorem 1.

Proof of Theorem 1.

Let n,l € Z, we assume n > [ without loss of generality. First let u € Cg’ﬁ anda+8< 1.
By using Lemma 2 (2) we can write

h[(Sright) ™ u(nh) = Bign)u(lh)] = ZA “(m — myu(mh) - ZA (m — Du(mh)

n—1
= Z(A Cm — 1) — A~(m — D)) u(mh) — u(lh)) — ZA (m — I)(u(mh) — u(lh))
m=n m=l

=I1+1I

On the one hand, by using estimate (3) and the hypothesis on u, we get

n—1-1

1] < Clul ol Z llm 1|1| — = Clul sl Z kl 5 < ClulshP(n - 1°*F.

m=I+1

Before doing the estimation for 1, observe that, as n > [, by (3) we have that |A~%(m — n)| <
T n), — and |[A~%(m — )| <7 n), - form > n+ 1. Also, by using Lemma 2 (1) and (3) we get

that

IA™(m —n)— A %m =)

= 1= A= (n = 1) = AV m = (2= 2) =+~ AV~ )|
Cln—1 Cln—1
S-S m-npe ML @

Hence, by using the comments above, the hypothesis on u and (3), we obtain that

_ 718 2n-I1 _ ) _ 8
|I|SC[u]Cthmhﬁ[|n—llﬁ+M+ y o v, 3 e bm - ]

(=D " L (m-n) (= n)>
l (]
< C[u]C(hmhﬁ [(In e Z +k(lna Z (n- l)(k:Z-_l-a(n - l)ﬁ)]
k=1 k=n—1+1

< Clul ol (n = ",
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Now suppose that u € C with @ + 8 > 1. By the definition of the space C, LBl e

have to prove that &g ((Srigh)*u) € Cy* . By using Srigh(Srigh) ) = (Srign)'~*u and
[2, Theorem 3.2], we conclude that ;gh((Origh) “u) € C0 atpl , so the result follows.

We prove statement (iii) for k = 1. The other cases follow by iteration.

LetueC ;ll’ﬁ anda +8 < 1. By hypothesis Oright4 belongs to CO We want to prove that

- La+p . . —a
6r1ghtu € Ch ’ that 18, 6”ght(6right)u nghl

Now suppose that u € C1 and a + 8 > 1. By hypothesis, dngniut € C,, %% We want to
ue C! that is, (Srgn) (65 Srignt (610 € CY P71 By using (i),

(Origntt) € C); 00+ and this is consequence of (i).

prove that 6-% " ghlu)

right ight

we have that 6.9 (Srightt) = 6 nu € C, 71 and by the definition of the space C, """, we
0,0+46-1
conclude that ign (8,1 )u € C; athl

Finally, assume that u € {*. Again, we can write

B [(Bright) ™" u(nh) = (Srighe) ™ *u(lh)] = Z(A_"(m —n) — A™(m — D)u(mh)

n—1

- Z A~(m — Du(mh).
m=[

By using (7), we have

e

n—1
< lulloo Z m < Cllulleo(n = D*

m=2n-1+1

D, (AGm=n) = A~ D)u(mh)

m=2n—I+1

and by using (3), we get that

2n—1

Z(A“’(m —n) = A(m — D))u(mh)

m=n

2n—1
< Cllulle [1 Ay sy l)l — + Z (IA™(m = n)| + A~ “(m—l)l)]

m=n+1
1 2n—1 1
< Clulleo |1+ ———— + — | < Cllullo(n - D*
< Cllul [ P m; (m_n),_a] lilloo( — 1)
and
n—1 n—1 1
;A (m — Du(mh) SCIIuIIm[1+m;+1 W]SCIIMIIOO(n—l) .
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