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ON A STOCHASTIC p(w,t, x)-LAPLACE

EQUATION
Guy Vallet, Petra Wittbold and Aleksandra Zimmermann

Abstract. A stochastic forcing of a non-linear singular/degenerated parabolic problem
of p(w,t, x)-Laplace type is proposed in the framework of Orlicz Lebesgue and Sobolev
spaces with variable random exponents. We give a result of existence and uniqueness of
the solution, for additive and multiplicative problems.
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§1. Introduction
We are interested in a result of existence, uniqueness and stability of solutions to:

du— Apudt =h(-,u)dw inQx(0,T)xD,
Ph)su=0 on Q x (0,T)xaD,

u(0,-) = up in L*(D).
where T > 0, D c R is a bounded Lipschitz domain, Q := (0,7) X D, w = {w,, 71,0 <
t < T} is a Wiener process on the classical Wiener space (Q,F,P); h = h(w,t,x, 1) is a
Carathéodory function on Q X Q X R, uniformly Lipschitz continuous with respect to A,
Apeyu = div([VulP " =2Vy) with a variable exponent p : Q x Q — (1,0) satisfying the
following conditions:
(pl) 1< p™:=essinf(,, plw,t,x) < p* :=ess SUP(,, 1) P(W, 1, X) < 00,

(p2) was. inQ, (t,x) = p(w,t, x), is log-Holder continuous, i.e. there exists C > 0 (which
might depend on w) such that, for all (¢, x), (s,y) € O,

C

Ip(w, 1, x) = p(w, s, y)l < ey

1
In(e + Go=ean)

(p3) progressive measurability of the variable exponent, i.e.
Qx[0,t] X D 3 (w, s, x) — p(w, s, X)

is F; X B(0, t) X B(D)-measurable forall 0 <r < T.

(p4) his a Carathéodory function in the sense that:
forany 1 € R, h(-, ) € N‘ZV(O, T, L*(D)), the space of predictable processes with values
in L?(D) (see G. Da Prato et al. [3] for example),
and, P® L%'-ae., 1 € R — h(w, 1, x, 1) € R is continuous. Moreover,  is a Lipschitz-
continuous function of the variable A, uniformly with respect to the other variables.
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Problems with variable exponent (i.e. when the exponent p depends on the time-space argu-
ments) have been intensively studied since the years 2000. For the basic definitions and prop-
erties of variable exponent Lebesgue and Sobolev spaces we refer to [4]. The main physical
motivation was induced by the modelization of electrorheological fluids. For example one
can study the case of coupled problems, where the exponent p = p(v(¢, x)) depends on a so-
lution v of a coupled PDE (see e.g. [1] and the references therein). Since reality is complex,
it can be interesting to consider stochastic perturbations acting on both equations, i.e.

du+A(u,v)dt = fdw, dv+ B@)dt=gduw.

This motivates our interest to study the toy problem (P, ) with variable exponent p depend-
ing on w, t and x with suitable measurability assumptions with respect to a given filtration.
The predictability and the pathwise Holder continuity of the solution v are formally com-
patible with the technical assumptions we have to impose on the variable exponent p, since,
for technical reasons, we need to consider log-Holder continuous exponents with respect to

(t, x).

§2. Function spaces

Let us define
N0, T; LX(D)) := LX(Q x (0, T); L*(D))

endowed with df ® dP and the predictable o-algebra P generated by the products ]s, ¢] X A,
0<s<t<T,A e ¥, whichis the space of predictable and therefore It6 integrable stochastic
processes. Let § %V(O, T; H’(;(D)) be the subset of simple, predictible processes with values in
Hg (D) for sufficiently large values of k. Note that S %,V(O, T; H’g(D)) is densely imbedded into
N%V(O, T; L*(D)). The following function space serves as the variable exponent version of the
classical Bochner space setting: there exists a full-measure set Q C Q such that we can define

Xo(Q) 1= {u € LX(Q) N L'(0,T; Wy (D)) | Vu € (L"“(Q)))
which is a reflexive Banach space for all w € Q with respect to the norm

”M”XM(Q) = ||M||L2(Q) + ”VMHLI’(‘W)(Q)-
X, (Q) is a parametrization by w of the space
X(Q) := {u € LX(Q) N L0, T; Wy (D)) | Vu € (LPV(Q)))

which has been introduced in [5] for the case of a variable exponent depending on (z, x).

For the basic properties of X(Q), we refer to [5]. For u € X,(Q), it follows directly from

the definition that u(r) € L*(D) N WS‘I(D) for almost every ¢t € (0,T). Moreover, from

Vu € LP“(Q) and Fubini’s theorem it follows that Vu(z, -) is in LP“*)(D) a.e. in (0, T).
Let us introduce the space

E={uecl’Qx Q) NL (Qx(0,T); Wg""(D)) | Vu e LPO(Q x Q)}



On a stochastic p(w, t, x)-Laplace equation 117

which is a reflexive Banach space with respect to the norm

uec&m llullg = lleell 220y + IVl oo x 0)-

Thanks to Fubini’s theorem, u € & implies that u(w) € X, (Q) a.s. in Q and, since Poincaré’s
inequality is available with respect to (¢, x), independently of w, u € & implies also u(w, ) €
L*(D) N Wy (D) for almost all (w, 1) € Q x (0, T).

§3. Main result

Definition 1. A solution to (P, ) is a function u € L>(Q; C([0,T]; LZ(D)))GN%V(O, T: L2 (D)N
&, such that, for almost every w € Q, u(0, -) = ug, a.e. in D and for all 7 € [0, T'],

13 t
u(t) — ug — f Apoyuds = f h(-, u) dw,
0 0

holds a.s. in D; or, equivalently, in the weak-sense:

O [u(t) — f h(-,u) dw] — Apyu = 0in X, (Q).
0

Theorem 1. There exists a unique solution to (P, h). Moreover, if u;, u, are the solutions to
(P, hy), (P, hy) respectively, then:

E[supn(ul — )OIl ) + f (1V1PO2Vuy = Vil Vary) - Vg = wp) di(t, )
t 0

<CE fQ o ta1) = o ) (2, ). ®)

§4. Proof of the main result

Our aim is to prove first a result of well-posedness of (P, #) in the additive case, i.e. when
he N‘ZV(O, T; L*(D)) is not a function of u:

Proposition 2. For any h € N‘ZV(O, T; L*(D)), there exists a unique solution to (P,h). More-
over, if uy, uy are the solutions to (P, hy), (P, h) respectively, then:

E(supu(m — u2) D7) + f (Vi O Vuy = [Viol™ Vi) - Viuy = o) dt, x))

t 0

<CE f Iy — hol* d(t, x). 3)
o

Then, with the above Lipschitz principle, one will get the result in the multiplicative case,
i.e. when A can be a function of u.
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4.1. The additive case for 1 € S3,(0, T; Hy(D))

Proposition 3. For g > max(2, p*), 0 < & < 1 and any h € N},(0, T; L*(D)) there exists
u® € LX(Q, C([0, T1; LX(D))) N N0, T5 LA(D)) N LU(Q x (0, T); Wy (D))

and a set Q c Q of total probability 1 on which u(0,-) = ug a.e. in D and
! !
u®(t) — up — f [eAgu® + Apyul ds = f hdw. 4)
0 0

in W44 (D) for all t € [0, T.

Proof: For ¢ > max(2, p*) and & > 0, the operator
A:Qx(0,T)x W(;’q(D) - W‘l’q/(D), Alw, t,u) = —eAgu — A1 0t

is monotone with respect to u for a.e. (w,?) € Q x (0,T) and progressively measurable, i.e.
for every ¢ € [0, T] the mapping

A:Qx(0,1)x W(;’q(D) — W_l’q/(D), (w, s,u) — A(w, s, u)

is ¥, X B(0,1) x B(W(;"’(D))—measurable. In particular, —A satisfies the hypotheses of [7,
Theorem 2.1, p. 1253], therefore for any € > 0 there exists a continuous process with values
in L*(D) solution to the problem (4). Then, [3, Prop.3.17 p.84] and [7, Theorem 2.3, p. 1254]
yield u® € L*(Q, C([0, T]; L*(D))).

Proposition 4. For any simple process h € § 3‘,(0, T; HS(D)), there exist a unique u € &N
L*(Q,C([0, T1; L*(D))) and a full-measure set Q € F such that for all w € Q we have

u(0,-) = uy a.e. in D and
I3 t_
u(t) — ug — f Apoyuds = f h dw &)
0 0

holds a.e. in D for all t € [0, T). In particular u is a solution to (P, h) in the sense of Definition
1.

Proof: For the first part of the proof, mainly based on deterministic arguments, we can
repeat the arguments of [2]: If we set v* := u® — fot h dw, such that v*(0) = ug, then u® satisfies
(4), iff there exists a full-measure set Q € ¥ such that

13 !
0® — eA,(V° + f h dw) — Apy (@ + f hdw)=0 (6)
0 0

in L9(0, T; W= (D)) for all w € Q. Testing (6) with v® to get a priori estimates, we can use
classical (monotonicity) arguments to conclude that pointwise for every w € € we have the
following convergence results, passing to a (not relabeled) subsequence if necessary, :

1.) v®* = vin X,(Q) and L*(0, T; L*(D)) weak-*,
2.) for any 1, v5(f) — v(t) in L*(D),
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3) JpIVe* = VolP@s dxdt — 0.

Then, passing to the limit in the singular perturbation, v satisfies the problem

!
0 — Apy(v + f hdw) = 0.
0
In particular, 0,0 € X],(Q) (see [5]) and v € W,,(Q) where one denotes by

Wu(Q) = {v € X,(Q) | dv € X;,(O)}.

Thanks to [5], W,(Q) — C([0, T], L*(D)) with a continuity constant depending only on T’
and the time-integration by parts formula is available. Thus, v € C([0, T]; L*(D)) and v is a
solution of the above problem in W,,(Q), for the initial condition . Since this solution is
unique, no subsequence is needed in the above limits. Then, denoting by u = v + fo. h dw, the

above convergence yields, for all w € Q:
1.) u® — win L*(0, T; L*(D)) with d,[u — fo. hdw] € X! (Q),
2.) for any 1, u®(f) = u(t) in L*(D),

3) Ap(w,,,)()ua — Ap(w,t,x)u in XZU(Q),
4) [, IVu® = VulP @ dxdr — 0,
We continue with the argumentation as in [2]: from the previous convergence results, the

a priori estimates and since Vh is bounded, we get uniform estimates that allow us to use
Lebesgue Dominated Convergence theorem and therefore it follows that

Vi, u®(f) = u(f) in L*(Q,L*(D)) and u® — u in &. (7)

Note that the above limits in L*(Q, L*(D)) and L*(Q, L>(Q)) are results in standard Bochner
spaces, but the measurability of Vu with respect to d(, x) ® dP deserves our attention. Since
Vu® and Vu€ are globally measurable functions, Lebesgue Dominated Convergence theorem,
together with a priori estimates yield

E f [Vu? — Vil [P dxdt — 0
(Y]

and thus, (Vu®) is a Cauchy sequence in LP")(Q x Q) and therefore a converging sequence. It
is then a direct consequence to see that Vu is the limit in LO(Q x Q) of Vu?®.

Then, passing to a (not relabeled) subsequence if needed, it follows that u® — u a.e. in Qx Q.
Hence u satisfies (5), or, in other words, d,[u — fol hdw] — Apyu = 0.

In particular, since / is regular, one gets that u — fol hdw € & with d,[u — fot hdw] € &'

We need now to prove that u € L2(Q,C([0,T], LA(D))). We already know that u : QX Q —
L*(D) is a stochastic process. Since u(w,-) € W,(Q) — C([0,T], L*(D)) for ae. w € Q,
the measurability follows from [3, Prop.3.17 p.84] with arguments as in [6, Cor. 1.1.2, p.8].
Then, a.s. in Q, the equation satisfied by u yields d,v — Apyu = 0, so that, for almoste every
tel0,T],

1d .
= — @172, + f IVulP @92V . Vo dx = 0.
24t PO )
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Since, w a.s.,

P (w,s5.x)

dxds

f‘ Vh dw
0

with a right side in L' (Q), one gets that u, v € L*(Q; C([0, T, L*(D)).

T
1 1
sup flotw, £ WPagy, ol +2 f f Liwypeso . L
1€[0,T] LD Lo o Jpp” ')

Lemma 5. Proposition 2 holds for any h € S %V(O, T; H’g(D)). More precisely, for hy,, h,, €
S%V(O, T, HS(D)) let u, be the solution to (P, h,) and u,, be the solution to (P, h,,). There exist
constants Ky, K, > 0 such that for any m,n € N,

E (a2 o r1.220p) + E fQ VualOd(, %) < Ky (lall72 000y + N0l 25 ®)

E (It = w3 o 1122009 + E fQ (Vunl?O Vit = Vit "> Vi) - Vit = ) (2, %)

< Kollt = 1l - ©

Proof: Using the Itd formula in (4) it follows that for all ¢ € [0, T] a.s. in Q we have

15
Nl (D117, +2 f f IVl )P dx ds
0 JD

! !
ng fhu dxdw+f fhﬁ dx ds + lluoll}> )
0 JD 0 JD

or, by subtracting (4) with h,, from (4) with A,

13
0, = 5, 1O ) + 2 f f (VGO Vug = Vil POV - V(g - ) dx ds
0 D

I3 !
<2 f f [y — R ) — uf) dx dw + f f (hy — hy)? dx ds.
0 D 0 D

Thus, by passing to the limit with € — 0, to the supremum over ¢ and then taking the expec-
tation, it follows that (¢ > 0 being a constant)

T
ECsup IO E [ [ 90 axas
te[0,T] 0 D

13
ScE(sup f f ity dxdw)+c||hn||§2(gx@+c||uo||§2(D), (10)
t€[0,T] JO D

T
ECsup s = O+ E [ [ (900702, 190720 90, = ) dxds
t€[0,T] 0 D

!
SCE( sup f f [ = B )ity — ) dx dw) + cllhn = Pl 22 0
t€[0,7]1 JO JD
(n
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Using Burkholder, Holder and Young inequalities on (10) we get for any y > 0

2 12
(sup f fh U, dx dw) < SE{f (f h,u, dx) ds] (12)
1€[0,T] D
172
< 3F (f ”h ”LZ(D)HM"HLZ(D) )
1/2

(sup ||un||Lz(D)) ( f I ||L2(D)) ]
1[0

S 37E( Sup HM”HLZ(D)) ||h ||L2(Q><Q)’
r€l0,

<3E

and similarly on (11),

¢
E( sup f f(hn =l — uy) dx dw) (13)
t€[0,7] JO D
< 3yE 2 3 —
s 0y z:[lég] ”un - M’””LZ(D) + ;” n m||L2(Q><Q)

Plugging (12) into (10), (13) into (11) and choosing y > 0 small enough yield Lemma 5.
Remark 1. It is an open question if the Itd6 formula is directly available for a solution of
(5) since we are not in Bochner spaces: the stochastic energy has to be defined in different
Banach spaces depending on ¢ € [0,7] and w € Q. That is why we need to apply the It6
formula to #?, and then pass to the limit. But then, only an inequality is obtained.

4.2. Existence for arbitrary i € N7,(0, T; L*(D))

Proposition 6. Forany h € N%V(O, T; L*(D)), there exists a unique u € ENL*(Q; C([0, T1; L*(D))
N N%V(O, T; L*(D)) such that a.s.

I3 !
u(t) — ug — f Apoyuds = f hdw (14)
0 0
forallt € [0,T], a.e. in D.

Proof: For any h € Ny, (0,T; L*(D)), there exists a sequence (h,) C S7,(0, T; H5(D)) con-
verging to i in Nj, (0, T; L2(D)) Let (u,) € &N L*(Q,C(0,T]; LZ(D))) be the sequence of
corresponding solutlons to (P, hy,). From (8) it follows that (u,) is a bounded sequence in & N
LX(Q, C([0, T); L*(D))) and (9) ensures that (i,) is a Cauchy sequence in LX(Q; C([0, T; LX(D)).
Hence there exists u € & N L*(Q; C([0, T]; L*(D))) such that #, — u in & and u, — u in
L*(Q; C([0, T]; LA(D))).

Moreover there exists a full-measure set Q € 7 such that, passing to a (not relabeled) subse-
quence if necessary, u, — u in C([0, T1; L*(D)) for all w € Q. In particular, u(0, -) = ug a.e.
in D forall w € Q.

For u = d(t, x) ® dP we have

f \Vit,, — Vit |POdy = f Vi, — Vit |POdu + f Vi, — Vie|POdu
Q 1 p=2

xQ <p<2
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Then, from (9) and the fundamental inequality ([8, Section 10]), for any &, € R%:

PP, p22

P=2¢ _ |nlP2) . — > p=2
(EP=E=mP~~ - E-n) 2 {(p— 1)|§—77|2(1 +|77|2+|§|2)T’ 1<p<2

It follows first that

f Vit = Vit POdu < 27 2 Kol = bl g0 (15)
p=2

then, from the generalized Young inequality it follows for any 0 < € < 1,

f Vit = Vit " du
1<p<2

Vu, — Vuy, PO 2zt
zf e (1 + 1V, + Vit 2O 5 s
1

2-p()

<p<2 (1 + [V + [Vu,[2)PO =

p(-)-2 V n = V m 2 s
Sf o Vity = Vit ——du + ef (1 + Vi + Vi) = du
1<p<2 1+ |Vun|2 + |Vum|2)T 1<p<2
1 Vi, — Vit
S_—l Y2 1) 0 d/.t+K3E
ep™ =D Jigp< (A + V2 + Vi)
1
<——Kllhy — bl + Kze, 16
6([7_ _ 1) 2” ”LZ(QXQ) 3€. ( )

since the sequence (u,) is bounded in LP(Q x Q) and u is a finite measure.

From (15), (16) and lim,, , ||k, — hm|li2 @0 = 0 it follows that Vu, is a Cauchy sequence
in LPO(Q x Q), thus a converging sequence.

In conclusion, u, converges to u in &N LX(Q; C([0,T]; LA(D) N N‘ZV(O, T:; L*(D)) and, by a
standard argument based on the Nemytskii operator induced by the Carathéodory function
G:(w,1,x,8) € QX QXRY > [gP@t972¢ € RY, |Vu,|PO~2Vu, converges to |Vu|’)"2Vu in
L7 O(Q x Q) since |G(w, t, x, &)|P' @) = |gp@tn),

Let us recall that, for any n € N, u, satisfies

15
0, (u,, - f hy, dw) - Aty =0 (17)
0

in &. Now we can choose a (not relabeled) subsequence of (u,) such that all previous con-
vergence results hold true. For any test function ¢(w, t, x) = p(w)y(t)v(x) with p € L™ (Q),
vy € D([0,T)) and v € D(D) we have

<at (un - f hn dlU) ) ¢> = f <6t (un - f hl’l dlU) . ¢> dP
0 &.8 Q 0 X, X,
=- f <(un - f hy dw) , 6t¢> dP — f upp(w, 0, x) dx dP. (18)
Q 0 XX, QxD

w
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In particular u, satisfies

!
- f (u - f hy, dw) 0,0 + VPOV, - Vo du — f upp(w,0,x) dx dP =0 (19)
QxQ 0 QxD

for all n € N. Therefore, using our convergence results, we are able to pass to the limit in
(19) and obtain

0y (u - fot h dw) - Apyu = 0 (20)
in &. (20), and a classical argument of separability, imply that a.s.
d, (u - fo t h dw) = Ao, in X,(Q) = L¥(0,T; W (D)) 1)
with @ > p* + 2. Moreover, a.s.

u-— f hdw € C([0, T]; L*(D)).
0

Thus we can integrate (21) to obtain a.s.

3 !
u(t) — up — f Apyuds = f h dw (22)
0 0

in L*(D) for all £ € [0, T].
If we assume that uy, u, € ENL*(Q, C([0, T1; L*(D)))NN3,(0, T; LA(D)) are both satisfying
(14), it follows that a.s. in

Bru1 = 12) = (Apioytts = Dyyiaz) = 0'in (X, (Q)). (23)

Using u; — uy as a test function in (23), and integration by parts in W,,(Q) we obtain unique-
ness.

4.3. Conclusion

Set hy, hy € N‘%V(O, T; L*(D)) and let u;, u, be solutions to (P, h;) and (P, h,). Since

E Il = u)ll g0 712009 + fQ (Vi PO2Vuy = VPO V) - V(g — ) dt, x))

<Cllh 24)

2
- hzllLZ(QxQ)9

we can repeat the arguments of [2] based on Banach’s fixed point theorem applied to
¥ : S € Ni(0,T; L*(D)) — us € Ni,(0, T; L*(D))

where ug is the solution to (P, h(-,S)) to deduce the existence of a unique solution u of (P, h)
in the sense of Definition 1. From (24) it also follows that (2) holds true and we have finished
the proof of Theorem 3.1.
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