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DISCONTINUOUS GALERKIN METHOD
APPLIED TO PHOTOTHERMAL

INSPECTION OF CRACKED MATERIALS
Ángel Javier Omella and Ricardo Celorrio

Abstract.
In this work we present a generalization of Baumann-Oden-type Discontinuous Galer-

kin Finite Element Method (DGFEM) to model the thermal wave scattering in lock-in
thermographic and vibrothermographic inspection of cracked samples of homogeneous
materials. The modelization is based on considering thin cracks as interfaces character-
ized by its thermal contact resistance.

We check numerically the order of convergence of the method for the 1D case. We
present a 3D heat flow numerical simulation of a cracked gear that has been implemented
by using a collection of scientific open-source software as an application example.

Keywords: Discontinuous Galerkin, lock-in thermography, crack detection.
AMS classification: 80M10.

§1. Introduction

The detection and characterization of cracks in materials using Non-Destructive Testing
(NDT) methods are important tools to prevent the structural failure of components (cf. [9]).
In particular, the use of infrared thermographic techniques for this proposal are becoming
popular in the last years (cf. [10] [14] [15] [16]). This techniques have demonstrated the abil-
ity to detect small cracks although an efficient quantitative analysis for crack characterization
is currently being studied.

In the second section of this work we show a model that can be straightforward applied
to infrared lock-in thermographic inspection (LT) and infrared lock-in vibrothermographic
inspection (LVT) of homogeneous and isotropic materials (cf. [2]). In LT the surface of
the sample is illuminated by an optical external source such as a modulated and defocused
laser spot that produces a time-harmonic thermal waves into the sample. On the other hand,
time-harmonic thermal waves in LVT are produced by the mechanical dissipated heat at the
defect due to the excitation of an ultrasonic wave applied to the sample. In both methods
the temperature field, amplitude and phase, at the surface of the sample is recorded with an
infrared camera.

The application of traditional continuous Finite Element Methods (FEM) (cf. [8]) to
cracked samples requires meshing the air located into the gap of the crack, which causes
a dramatically increasing of the number of elements in the mesh needed to solve the temper-
ature field. To overcome this problem, we have developed in section 3 a much more efficient
numerical method based on Discontinuous Galerkin (DG) elements where thin cracks are
considered as interfaces characterized by its thermal contact resistance.
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The numerical model that we present is a Baumann-Oden-type Discontinuous Galerkin
Finite Element Method (DGFEM) and is an improvement to the method introduced in (cf. [4])
and an extension one of the method considered in (cf. [5]), where the LVT case was not in-
cluded. Furthermore, in this work we focus on some mathematical aspects about the deduc-
tion of the method following the methodology exposed by Douglas et al. in (cf. [1]).

In section 4 we check numerically the order of convergence of the method for a 1D case.
Finally, in section 5 we show a photothermal application example where a 3D heat flow for
LT of a cracked gear of AISI E9310 steel is simulated.

§2. Modelization

Let Ω ⊂ R3 be a bounded open domain (see Figure 1 -left) which models an homogeneous
and isotropic material with thermal conductivity κ and thermal diffusivity α. We consider
an air-crack placed in the interface Γc ⊂ Ω, characterized by its thermal contact resistance
R : Γc → R≥0, being Rκair the effective thickness of the crack, where κair is the conductivity
of the air.

In order to present properly the problem, we need to introduce some trace operators, the
average {·} and the jump ~·�, defined on any interior interface Γ definable into the domain Ω

(as for example Γc). Let us define the outward normal vectors to each side of the interface n+

and n−, where subscripts + and − denote right and left sides respectively (from the point of
view of an arbitrary observer sited in the interface); the trace operator are

{·} :=
(·)+ + (·)−

2
, ~·� = (·)+n+ + (·)−n−, for any interface Γ ∈ Ω.

The spacial component u : Ω→ C of the thermal wave at frequency ν > 0,<
(
u(x)e−i2πνt

)
,

induced into Ω is governed by the following discontinuous transmission problem:

∆u + i
2πν
α

u = 0, in Ω \ Γc, (1a)

κ~∇u�
∣∣∣
Γc

= f1, on Γc, (1b)

~u�
∣∣∣
Γc

+ Rκ{(∇u, ·n)n}
∣∣∣
Γc

= f2 on Γc, (1c)

κ∇u · n
∣∣∣
∂Ω

= g, on ∂Ω; (1d)

where the spatial components of the ν-harmonic thermal sources exciting the material are:
two heat sources f1 : Γc → C in the flux continuity equation (1b) and g : ∂Ω → C in the
boundary condition (1d); and a temperature source f2(x) := f2(x)n+(x), being f2 : Γc → C a
complex-valued function, in the discontinuity transmission condition (equation 1c). The heat
source f1 is related to vibrothermographic inspections and g to the heat transmitted by the
illumination of the surface in photothermal techniques.

The discontinuous transmission condition (1c) requires a constrain on the space H1(Ω\Γc)
in the standard variational formulation (similar to the discrete version in (11)) of (1), being the

space of admissible functions V :=
{
v ∈ H1(Ω \ Γc → C)

∣∣∣∣ ∫Γc
| {(∇v · n)n} |2 < ∞

}
, endowed

with the norm ||v|| :=
(∫

Γc
| {(∇v · n)n} |2 +

∫
Ω\Γc
|∇v|2 +

∫
Ω
|v|2

)1/2
.
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Figure 1: “Curved” (left) and “polygonal” (right) domains and interfaces.

§3. Discretization and flux formulation

We define a “polygonal” domain Ωh ∈ R
3 and interface Γc,h ⊂ Ωh, as approximations of the

“curved” domain Ω and the interface Γc respectively (see Figure 1). We discretize Ωh by
means of a triangulation, Th = {K} of simplexes K, conforms to Γc,h.

We define the finite dimensional complex-valued spaces associated to Th

Vh := {v ∈ L2(Ωh) | v|K ∈ Pp(K), ∀K ∈ Th},
Σh := {τ ∈ [L2(Ωh)]3 | τ|K ∈ [Pp(K)]3, ∀K ∈ Th},

being Pp(K) the space of multivariable polynomial functions of degree p ≥ 2.
In order to obtain the the DGFEM, we rewrite equation (1a) as a first-order system

σ = ∇u, ∇ · σ + i
2πν
α

u = 0, in Ωh \ Γc,h. (2)

Multiplying the first and the second equations in (2) by test functions τ ∈ Σh and v ∈ Vh

respectively, integrating by using the following identity derived from the divergence theorem∫
K

a∇ · b +

∫
K

b · ∇a =

∫
∂K

a b · n (3)

in all simplexes, we have formally
∑
K∈Th

∫
K
σ · τ = −

∑
K∈Th

∫
K

u∇ · τ +
∑
K∈Th

∫
∂K

u nK · τ,∑
K∈Th

∫
K
σ · ∇v =

∑
K∈Th

∫
∂K
σ · nK v +

∫
Ωh

i
2πν
α

u v.

The so-called flux formulation is the following quite general discrete approximation of
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(2): Find uh ∈ Vh and σh ∈ Σh such that
∑
K∈Th

∫
K
σh · τ = −

∑
K∈Th

∫
K

uh∇ · τ +
∑
K∈Th

∫
∂K

ûK nK · τ,∑
K∈Th

∫
K
σh · ∇v =

∑
K∈Th

∫
∂K
σ̂k · nKv +

∫
Ωh

i
2πν
α

uhv,
(4)

being ûK ≈ u|∂K and σ̂K ≈ ∇u|∂K = σ|∂K the numerical fluxes.

3.1. The primal formulation
Following the methodology presented by Douglas et al. in (cf. [1]), we have to eliminate the
auxiliary variable σh in equation (4) in order to obtain the so-called primal formulation.

Let us denote Γsk = ∪K∈Th∂K \ (Γc,h ∪ ∂Ωh) the interior skeleton of Th (see Figure 1) and
introduce the space of functions on Ωh, H1(Th), whose restrictions to each element K belongs
to the Sobolev space H1(K).

By using the identity∑
K∈Th

∫
∂K

aK bK · nK =

∫
Γsk

⋃
Γc,h

~a� · {b} +
∫

Γsk
⋃

Γc,h

{a} ~b� +

∫
∂Ωh

a n · b, (5)

for all a ∈ H1(Th) and all b ∈ [H1(Th)]3, we can rewrite the flux formulation (4) as follows:
∑
K∈Th

∫
K
σh · τ = −

∑
K∈Th

∫
K

uh∇ · τ +

∫
Γsk

⋃
Γc,h

(~û� · {τ} + {û}~τ�) +

∫
∂Ωh

û n · τ∑
K∈Th

∫
K
σh · ∇v =

∫
Γsk

⋃
Γc,h

(~v� · {σ̂} + {v}~σ̂�) +

∫
∂Ωh

v n · σ̂ +

∫
Ωh

i
2πν
α

uhv
(6)

Furthermore, applying identities (3) and (5) we have that for uh ∈ Vh and τ ∈ Σh

−

∫
Th

uh∇ · τ =

∫
Th

∇uh · τ −

∫
Γsk

⋃
Γc,h

(~uh� · {τ} + {uh}~τ�) −
∫
∂Ωh

uhn · τ. (7)

Substituting the equality (7) in the first equation of (6) and taking τ = ∇v , we get

∑
K∈Th

∫
K
σh · ∇v =

∑
K∈Th

∫
K
∇uh · ∇v +

∫
Γsk

⋃
Γc,h

(~û − uh� · {∇v} + {û − uh}~∇v�)

+

∫
∂Ωh

(û − uh)n · ∇v,∑
K∈Th

∫
K
σh · ∇v =

∫
Γsk

⋃
Γc,h

(~v� · {σ̂} + {v}~σ̂�) +

∫
∂Ωh

vn · σ̂ +

∫
Ωh

i
2πν
α

uhv.

(8)

By subtraction in (8) and reorganizing terms, we obtain the so called primal formulation:∑
K∈Th

∫
K
∇uh · ∇v −

∫
Ωh

i
2πν
α

uhv +

∫
Γsk

⋃
Γc,h

(~û − uh� · {∇v} + {û − uh}~∇v� − ~v� · {σ̂} − {v}~σ̂�)

+

∫
∂Ωh

((û − uh)n · ∇v − v n · σ̂) = 0.

(9)
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3.2. Choices of the numerical fluxes
The particular type of DG method that we apply is defined by the choice of the following
numerical fluxes:

1. On the skeleton, Γsk, we chose the same numerical fluxes as in Baumann-Oden DGFEM: û
∣∣∣
Γsk

= {uh} + nK~uh�,

σ̂
∣∣∣
Γsk

= {(∇uh · n)n}.

2. On the interface, Γc,h, where the crack is placed the choice of the numerical fluxes are:

û
∣∣∣
Γc,h

= {uh} +
1
2

nK~uh� +
1
2

he

he + cκR2 nK(~uh� + κR{∇uh} − f2),

σ̂
∣∣∣
Γc,h

= {(∇uh · n)n} +
1
2

nK · ~∇uh�

=
he

he + cκR2 (∇uh · n)n +
cR

he + cκR2 ( f2 − ~uh�) +
1
2

nK f1,

being he the average of the diameters of the smallest circumscribed sphere around of
each simplex that share a face, and where c ∈ R is a constant with dimensions of
[P][L]−2[T ]−1 that gives us a robust family of DG methods depending on the value of
the constant.

3. On the boundary ∂Ωh the fluxes are: û
∣∣∣
∂Ωh

= uh|∂Ωh and σ̂
∣∣∣
∂Ωh

=
g
κ

n.

3.3. The variational form
Substituting the numerical fluxes in the primal formulation (9) and reordering, we get the
following c-parameter dependent family of variational forms: Find uh ∈ Vh such that∑
K∈Th

∫
K
∇uh · ∇v −

∫
Ωh

i
2πν
α

uhv +

∫
Γsk

~uh� · {∇v} −

∫
Γsk

~v� · {∇uh} +

∫
Γc,h

he

he + cκR2 ~uh� · {∇v}

−

∫
Γc,h

he

he + cκR2 {∇uh} · ~v� +

∫
Γc,h

heκR
he + cκR2 {∇uh · n}{∇v · n} +

∫
Γc,h

cR
he + cκR2 ~uh� · ~v�

=

∫
Γc,h

he

he + cκR2 f2 · {∇v} +

∫
Γc,h

cR
he + cκR2 f2 · ~v� +

∫
Γc,h

f1
κ
{v} +

1
κ

∫
∂Ωh

gv, ∀v ∈ Vh.

(10)

For sake of simplicity and rapidness we can choose c = 0 that let us becoming the variational
form (10) much more simple:∑

K∈Th

∫
K
∇uh · ∇v −

∫
Ωh

i
2πν
α

uhv +

∫
Γsk

~uh� · {∇v} −

∫
Γsk

~v� · {∇uh} +

∫
Γc,h

~uh� · {∇v}

−

∫
Γc,h

{∇uh} · ~v� +

∫
Γc,h

κR{∇uh · n}{∇v · n} =
1
κ

∫
∂Ωh

gv +

∫
Γc,h

f2 · {∇v} +

∫
Γc,h

f1
κ
{v}.

(11)
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§4. Numerical results

In order to illustrate how DGFEM works and to estimate its order of convergence, we perform
some numerical experiments in a normalized 1D problem (P) of (1), with Ω ≡ Ωh = (0, 4µ),

being µ =
√

α
πν

the thermal-diffusion length, Γc = {2µ}, g(0) = −κ/µ, f1 = 0, f2 = 0.

The exact solution of (P), with R = µ/κ, is u( · ) = ũ( ·
µ

), being ũ(x) = c1e−x+ix + c2ex−ix

for x ∈ [0, 2) and ũ(x) = c3e−x+ix + c4ex−ix for x ∈ (2, 4], where c1 =
(1+i)e−4+i4−1−3i

2ie−8+i8+4e−4+i4−4−2i ,
c2 = c1 − (1 + i)/2, c3 = −1

e−8+i8−2ie−4+i4−1+2i and c4 = c3e−8+i8. For the numerical approximation
we solve the variational formulation (11) in an uniform mesh with h = µ/2 and p = 2.
In Figure 2 we show both exact and numerical solutions of (P) with R = µ/κ. It can be
observed the discontinuity of the exact solutions u, the continuity of its lateral gradients
(∇u(x−) = ∇u(x+) for x ∈ Ω) and the jumps ~uh� and ~∇uh� in the interface Γc ≡ Γc,h and in
the skeleton Γsk = {k µ2 | k = 1, 2, 3, 5, 6, 7} of the approximate solution.

Figure 2: Representation in Ω \ {Γc ∪Γsk} of the exact and numerical solutions of the normal-
ized problem (P) with thermal contact resistance R = µ/κ.

We estimate the quantitative approximation error, uh − u, in the H1-type norm

|||v|||2 =
∑
K∈Th

∫
K
|∇v|2 +

∑
∂K∈Γsk

1
h

∫
∂K
|~v�|2 +

∑
∂K∈∂Ω

∫
∂K
|v|2

+
∑
∂K∈Γc

∫
∂K

(
1

κR + h
|~v�|2 + |{(∇v · n)n}|2

)
, for all v ∈ V + Vh,
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with the convention in the 1D case
∫
∂K w := w|∂K , for all ∂K ∈ Γc

⋃
Γsk

⋃
∂Ω.

In Table 1 we show values of the error |||uh − u||| in uniform meshes of the numerical
approximation (11) of problem (P) with R = µ/κ, and the estimate order of convergence,

EoC =
log ( |||uh1 − u|||/|||uh1/2 − u|||)

log 2
.

h µ/2 µ/4 µ/8 µ/16 µ/32 µ/64 µ/128

|||uh − u||| 3.16865974e-02 1.02190775e-02 2.93616848e-03 7.88965573e-04 2.04593375e-04 5.20981435e-05 1.31451663e-05

EoC — 1.63260778 1.7992583 1.8959005 1.94720292 1.97345556 1.98669957

Table 1: Errors and EoCs of the normalized problem (P) with R = µ/κ.

The estimated order of convergence goes to 2, the same as the degree p of the polyno-
mial chosen in the DGFEM. This estimation is agree with the results of convergence in a
weaker norm related to the Baumann-Oden method for the Poisson equation with homoge-
neous Dirichlet boundary conditions analyzed in (cf. [13]).

In Figure 3 we can see the uniform behavior of the relative error in function of R for the
approximation solution of problem (P). The relative error tends to be divided by four when
doubling the number of elements in uniform meshes. Assuming uniform converge of order
2 for R ≥ 0, we can derive the following pointwise convergence result for the jump on the
crack: exist C > 0 independent of h and R such that

∣∣∣~u�Γc − ~uh�Γc

∣∣∣ ≤ Ch2
√
κR + h |||u|||.

Figure 3: Behavior of the relative error for different R and discretizations of problem (P)

Let us remark that hybridizable DG methods (see cf. [7], [6] and references therein) are
more efficient than the Baumann-Oden-type method here exposed, but unlikely they have not
yet been implemented in FEniCS (cf. [11]), the collection of free software we using for our
practical purposes in active thermography simulations.
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§5. Photothermal application

Let us consider a cracked gear made of AISI-E9310 alloy steel with κ = 51.9Wm−1K−1 and
α = 1.4E−5m2s−1 (cf. [12]). Although is know that thermophysical properties of hardened
gears are function of depth (cf. [3]) for simplicity, we do not take this into account.

We model a lock-in thermographic inspection ( f1 = 0, f2 = 0) where the excit-
ing laser spot (see Figure 4) at frequency ν = 1Hz is modeled by a Gaussian function
g(x) = 2Io

πa2 e−
2

a2 ‖x−xc‖ with radius a = 0.5mm; the center of the laser spot is placed at point
xc = (0,−2.5, 0), units in mm. The interface related to a rectangular crack, vertical to the
upper surface x3 = 0, is 112.163µm long, 3mm deep (axe Z), and it is upper vertices are
(−0.257819,−3.42122, 0) and (−0.145656,−3.42122, 0). The effective thickness or the crack
is Rκair = 2.6µm, being κair = 0.026Wm−1K−1.

Figure 4: Dimensions of the gear (expressed in mm) with number of teeth z = 15 and module
m = 5 (left). 3D scheme of the gear (right), the axes are placed at the origin.

In order to solve the variational form (11) we choose the finite element family of three
dimensional complex-valued discontinuous Lagrange elements of degree 2. Due to complex
numbers are not supported in the software used for the implementation, we have to uncouple
in real and imaginary part and we have to define a mixed function spaces that are created by
taking the product of simpler spaces of three dimensional discontinuous Lagrange of degree
2. Therefore we have 20 real unknowns for each tetrahedron.

We present some results of the numerical simulation that has been implemented by using a
collection of scientific open-source software, NETGEN as mesh generator, FEniCS (cf. [11])
for automated solution of differential equations by FEM and for data visualization Matplotlib
plotting library and ParaView. In Figure 5 we can see the solutions of the real and imaginary
part of the temperature on the illuminated surface of the gear. In Figure 6 we present a detail
of the cracked teeth where we can show the logarithm of the temperature amplitude and
phase. We can see the jump along the crack remarked by the blue profile and the continuity
of the profile represented by the green line placed out of the crack.
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Figure 5: Real (left) and imaginary (right) part of the numerical solution of the temperature
obtained on the gear surface. The red line represents the crack.

Figure 6: Detail of the superficial temperature T = |T |ei Ψ, logarithm of amplitude (left) and
phase (right), on the illuminated surface of the teeth with crack.

Acknowledgements

This work has been supported by the Spanish government projects ref. MTM2013-40842-P
and MAT2011-23811 and by the Diputación General de Aragón (Grupo consolidado PDIE).
Omella gratefully acknowledge to the organization of the XIII International Conference Za-
ragoza-Pau on Mathematics and its Applications.

References

[1] Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. Unified analysis of dis-
continuous galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001),
1749–1779.

[2] Breitenstein, O., Warta, W., and Langenkamp, M. Lock-in thermography: Basics and
use for evaluating electronic devices and materials. Springer, 2010.
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