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A BIVARIATE HOMOGENEOUS
STOCHASTIC VASICEK DIFFUSION

PROCESS
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Abstract. In this paper, we extend Vasicek’s homogeneous univariate stochastic diffusion
process(cf. [18] and [12]) to the bivariate case, in the same way as has been described
for the bivariate Gompertz and Gamma processes (cf. [8] and [11]). We first obtain the
analytical expression of the process to resolve the stochastic differential equation that
characterises the process in question, its probabilistic distribution and the conditional and
unconditional trend functions of the process. Then, using matrix differential calculus,
we study the problem of estimating the parameters present in the drift vector and in the
diffusion matrix, by maximum likelihood with discrete sampling.
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§1. Introduction

Stochastic diffusion processes (SDP), which are described by stochastic differential equa-
tions (SDE) or Kolmogorov partial differential equations, arise naturally in a variety of ap-
plications. In addition to the traditional uses in biology and economics, these processes have
become indispensable in fields such as stochastic economy and finance, news technology,
cell growth, radiotherapy, chemotherapy, energy consumption and the emissions of CO2 and
greenhouse gases.

The statistical inference in SDP is a crucial but non-trivial task, especially when the pro-
cess is observed continuously. In most cases (with continuous sampling), the estimation of
parameters in these models, in particular, are based on methods for approximating the likeli-
hood function, the likelihood estimators or on alternatives such as non parametric methods.
An extensive review of this theory for the general case can be consulted in Prakasa-Rao [15],
Bibby et al. [1] and Fan [2], and in particular diffusion cases, in Ferrante et al. [3] for the
Gompertz process, in Giovanis et al. [5] in the case of the logistic model and in Gutiérrez et
al. [9] for the inverse CIR model, among others. Furthermore, many studies have been con-
ducted in the context of inference by discrete sampling, including those related to particular
processes such as the homogeneous and non homogeneous lognormal processes, by Tintner
et al. [17], the Gompertz diffusion process, in both the homogeneous and non homogeneous
cases, by Nafidi [14], Gutiérrez et al. [10] and Rupsys et al. [16] and the Vasicek non homo-
geneous process, by Gutiérrez et al. [12].
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Various useful extensions of the ordinary univariate SDP have also been proposed, such as
non homogeneous processes and multivariate cases. However, very few univariate SDP have
been extended to the multivariate case; in this respect, we can cite the non homogeneous
lognormal process with exogenous factors proposed by Gutiérrez et al. [6], or the extension
to the lognormal process with a vector of exogenous factors, proposed by Gutiérrez et al.
[7]. In addition, we have the homogeneous Gompertz process studied by Gutiérrez et al. [8],
the multivariate Gompertz process with delay considered by Fran et al. [4] and finally the
Gamma diffusion process defined by Gutiérrez et al. [11].

The one-dimensional homogeneous SDP defined by Vasicek [18] has been extremely in-
fluential in the field of stochastic economics and finance. Various researchers have applied it
to obtain interest rate models and short rate models, taking into account diverse extensions of
the process, such as extending their linear drift to the non-linear function, for both the homo-
geneous and the non homogeneous cases, the non homogeneous version with a multifactorial
drift function. More details of these extensions can be found in Gutiérrez et al. [12], who
also studied a new non homogeneous extension of this process, introducing exogenous fac-
tors into the drift process, in a linear way. This approach was applied to data on the emissions
of CO2, with respect to the growth in GDP and the total electricity consumption in Morocco
as exogenous factors.

The present study extends the one dimensional Vasicek diffusion process to the multi-
variate case; specifically a bivariate case. The rest of this paper is organised as follows: in
the second section, the proposed model is defined in terms of the Ito stochastic differential
equation. We then determine the analytical expression of the process to resolve the SDE that
characterises the process in question. We obtain the probability transition density function
(ptdf) of the proposed processes, together with the probabilistic distribution, the marginal
moments, the conditional and non conditional trend functions and the covariance function.
The third section presents an integrated study of the estimation of the drift and diffusion pa-
rameters. The first of these are estimated by maximum likelihood methods, using discrete
sampling and matrix differential calculus.

§2. The bivariate Vasicek stochastic diffusion process

2.1. The model and its analytical expression
The bivariate Vasicek diffusion process can be defined by the bidimensional stochastic pro-
cess {x(t) = (x1(t), x2(t))′; t ∈ [t0,T ]; t0 ≥ 0} that satisfies the following Ito SDE:

dx(t) = (a − βx(t))dt + B1/2dw(t) ; x(t0) = xt0 (1)

where {w(t); t ∈ [t0,T ]} is a 2-dimensional standard Wiener process, xt0 is a fixed vector
belonging to (0,∞)2, a = (a1, a2)′ and B =

(
bi j

)
i, j

is a 2 × 2 symmetric non negative definite
matrix. The parameters a1, a2, β and bi, j for 1 ≤ i, j ≤ 2 are real and must be estimated.

By applying the Ito formula to the transform

y(t) = eβt x(t) = eβt (x1(t), x2(t))′
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we obtain the following SDE:

dy(t) = eβt
(
a −

b
2

)
dt + eβtB1/2dw(t) , y(t0) = eβt0 xt0

where we denote by b = diag(B) = (b11, b22)′

Then, by integrating, we have

y(t) = y(t0) +

∫ t

t0
eβθdθ(a −

b
2

) + B1/2
∫ t

t0
eβθdw(θ)

= y(t0) +
eβt − eβt0

β

(
a −

b
2

)
+ B1/2

∫ t

t0
eβθdw(θ)

from which we can deduce the solution of our original SDE Eq.(1) namely

x(t) = e−β(t−t0)xt0 +
1 − e−β(t−t0)

β
(a −

b
2

) + B1/2
∫ t

t0
e−β(t−θ)dw(θ)

2.2. The pdf and the moments of the model

The random vector
∫ t

s eβθdw(θ) has a bivariate normal distribution N2

(
0,

∫ t
s e2βθdθI2

)
(where

I2 denotes the 2 × 2 identity matrix). It can then be deduced that x(t) | x(s) = xs ∼

N2 (µ(s, t, xs),Σ(s, t)) which has a bivariate normal distribution with

µ(s, t, x) = e−β(t−s)x +
1 − e−β(t−s)

β
(a − b/2)

Σ(s, t) =
1

2β
(1 − e−2β(t−s))B

The transition density function of this process is then expressed as f (y, t | x, s) (for y =

(y1, y2)′ and x = (x1, x2)′) has the form

f (y, t | x, s) = (2π)−1 | Σ(s, t) |−
1
2 exp

{
−

Q
2

}
(2)

where | B | is the determinant of the matrix B, and Q is a quadratic form given by

Q = (y − µ(s, t, x))′ (Σ(s, t))−1 (y − µ(s, t, x))

The marginal conditional trend functions of the processes, for i = 1, 2, are:

E
(
xi(t) | xi(s) = xs,i

)
= e−β(t−s)xs,i +

1 − e−β(t−s)

β

(
ai −

bii

2

)
(3)

By assuming the initial condition P(x(t) = xt0 ) = 1, and using Eq.(3), the marginal (un-
conditional) trend functions for i = 1, 2 are:
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E (xi(t)) = e−β(t−s)xt0,i +
1 − e−β(t−t0)

β

(
ai −

bii

2

)
the marginal variance function of the process, for i = 1, 2 is:

Var (xi(t)) =
1 − e−2β(t−t0)

2β
bii

and the covariance function at the same moment is

Cov (x1(t), x2(t)) =
1

2β
(1 − e−2β(t−t0))b12

§3. Likelihood parameters estimation

The parameters β, a and B are estimated by the maximum likelihood method based on discrete
sampling. To construct the likelihood function associated with the process, we consider the
discrete sampling of the process

{
x(t1) = xt1 ; x(t2) = xt2 ; . . . , x(tn) = xtn

}
at times t1, t2; . . . ; tn

(with ti − ti−1 = 1 for i = 2, . . . , n), in which each x(tα) represents the bidimensional vector
x(tα) = (x1(tα), x2(tα))′. For the sake of simplicity, we denote this as xtα = xα, with the initial
condition P[x(t1) = x1] = 1. By applying the Markov property and making use of Eq.(2), the
likelihood function associated with the sample considered, of size (n − 1), is given by:

L(x1, . . . , xn; β; γ; B) = (2π)−(n−1)νβ
−(n−1) | B |−

(n−1)
2

n∏
α=2

exp
{
−

1
2

[
xα − e−βxα−1 − (1 − e−β)

γ

β

]′
ν−2
β B−1

[
xα − e−βxα−1) − (1 − e−β)

γ

β

]}

where ν2
β =

1 − e−2β

2β
and γ = a −

b
2

With the following change of variable v1 = log(x1) and for α = 2, . . . , n:

vα(β) ≡ vα = νβ
−1

(
xα − e−βxα−1

)
If we denote by ξβ = ν−1

β

(1 − e−β)
β

, then in terms of vα, the likelihood function gives us:

Lv1,...,vn (β; γ; B) ≡ L = (2π)−(n−1)ν−(n−1)
β | B |−

(n−1)
2

exp

−1
2

n∑
α=2

(
vα − ξβγ

)′
B−1

(
vα − ξβγ

)
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The differential of the log-likelihood function is

d log(L) = −(n − 1)ν−1
β

∂νβ

∂β
dβ −

n − 1
2

tr
(
B−1dB

)
−

1
2

n∑
α=2

[
−

(
vα − ξβγ

)′
B−1(dB)B−1

(
vα − ξβγ

)]
+ξβ

n∑
α=2

(
vα − ξβγ

)′
B−1(dγ)

−

n∑
α=2

(
vα − ξβγ

)′
B−1

(
∂vα
∂β
−
∂ξβ

∂β
γ

)
dβ

By applying trace properties, the last differential can be written as:

d log(L) =
1
2

tr

 n∑
α=2

[
B−1

(
vα − ξβγ

) (
vα − ξβγ

)′
− I2

]
B−1dB


+ξβtr

 n∑
α=2

(
vα − ξβγ

)′
B−1(dγ)


+

ν−1
β

∂νβ

∂β

−(n − 1) +

n∑
α=2

(
vα − ξβγ

)′
B−1vα


−νβ

−1e−β
n∑
α=2

(
vα − ξβγ

)′
B−1xα−1 +

∂ξβ

∂β

n∑
α=2

(
vα − ξβγ

)′
B−1γ

 dβ

From the relations tr(AB) = Vec′(A′)Vec(B) and dVec(A) = Vec(dA), where Vec is the
matrix vectorisation (see Magnus et al. [13]), we obtain

d log(L) = Vec′
 n∑
α=2

[
B−1

(
vα − ξβγ

) (
vα − ξβγ

)′
− I2

]
B−1

 dVec(B)

+ξβVec′
B−1

n∑
α=2

(
vα − ξβγ

) dVec(γ)

+

ν−1
β

∂νβ

∂β

−(n − 1) +

n∑
α=2

(
vα − ξβγ

)′
B−1vα


−νβ

−1e−β
n∑
α=2

(
vα − ξβγ

)′
B−1xα−1 +

∂ξβ

∂β

n∑
α=2

(
vα − ξβγ

)′
B−1γ

 dβ

and by the likelihood principle, the estimators of B and γ are obtained from the following
equations:

B−1
n∑
α=2

(
vα − ξβγ

)
= 0
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n∑
α=2

[
B−1

(
vα − ξβγ

) (
vα − ξβγ

)′
− I2

]
B−1 = 0

with respect to the estimator of β, we have

ν−1
β

∂νβ

∂β

−(n − 1) +

n∑
α=2

(
vα − ξβγ

)′
B−1vα

−ν−1
β e−β

n∑
α=2

(
vα − ξβγ

)′
B−1xα−1+

∂ξβ

∂β

n∑
α=2

(
vα − ξβγ

)′
B−1γ = 0

Then after various operations (not shown), the likelihood estimators γ̂, B̂ and β̂ for the pa-
rameters are found to be:

γ̂ =
1

(n − 1)ξβ̂

n∑
α=2

vα

B̂ =
1

n − 1

n∑
α=2

(
vα − ξβ̂γ̂

) (
vα − ξβ̂γ̂

)′

β̂ = log



 n∑
α=2

x′α−1

  n∑
α=2

xα−1

 − (n − 1)
n∑
α=2

x′α−1xα−1 n∑
α=2

x′α−1

  n∑
α=2

xα

 − (n − 1)
n∑
α=2

x′α−1xα


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