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DIRECTIONAL TRANSFORMS AND
PSEUDO-COMMUTING PROPERTIES

Mira Bozzini, Daniele Ghisi, Milvia Rossini and Tomas Sauer
Abstract. Given a diagonal anisotropic expanding matrix D ∈ Zd×d, we show that it is al-
ways possible to detect a unimodular matrix A ∈ Zd×d that satisfies the pseudo-commuting
properties

DA = AnD.

In particular when d = 2 the more general relation

DAm = AnD

holds.
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§1. Introduction

Applications related to phenomena that can be described as functions f ∈ L2(Rd) (e.g. sig-
nals, images etc) have received a strong impulse from the definition of wavelet transform
and from the construction of efficient algorithms based on a multiresolution analysis (MRA)
of L2(Rd). When dealing with anisotropic phenomena, it is well known that wavelets do not
provide optimally sparse representations. For these reasons, in the nineties, directional trans-
forms were introduced and since then a huge amount of work has be done to solve efficiently
anisotropic problems such as the detection of edges along anisotropic directions in two di-
mensional images. The literature on directional transforms includes many papers, especially
for the two dimensional case (see e.g. [1] for directional wavelets, [3] for ridgelets, [5] for
contourlets, [4] for curvelets, and the references therein).
In this panorama, a particular attention has to be given to the discrete shearlet transforms (see
e.g. [7]) which have many interesting applications: both theoretical and practical. Thanks to
their mathematical structure, they provide a MRA similar to those associated with classical
wavelets. In the shearlets case, the classic (acceptable) dilation matrix M (tipically the dyadic
matrix 2I) is replaced by the product between an expanding anisotropic diagonal matrix

Da =

(
a2Ip 0

0 aId−p

)
, a ∈ N, a ≥ 2, p ≤ d (1)

and a pseudo rotation matrix on Zd, the so called shear matrix

S W =

(
Ip W
0 Id−p

)
, (2)

resulting in
M(W) = Da S W .
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Shear matrices have interesting properties that make them attractive and efficient for the so-
lution of applied problems. The main drawback is that the scaling matrix M(W) has large
determinant given by det(Da) = ad+p which takes minimum value for

D2 =

(
4Ip 0
0 2Id−p

)
.

This leads to a quite substantial complexity in implementations since the complexity is di-
rectly related to the determinant of the scaling matrix.

This drawback was the starting point for studying the existence of different matrices with
smaller determinant which, as shearlets, allow to write the scaling matrix as product between
an anisotropic expanding diagonal matrix and a unimodular matrix. Our aim is to look for
directional anisotropic expanding matrices M = DA, with properties equivalent to those of
M(W), but with smaller determinant, satisfying a pseudo-commuting property

DA = AnD, (3)

for some integer n.

§2. Notations and backgroud material

2.1. Preliminary definitions
A unimodular matrix A ∈ Zd×d is a matrix with det (A) = ±1. A square matrix B is a periodic
matrix if B(`+1) = B for ` a positive integer. If ` is the least such integer, then the matrix is
said to have period ` or to be `-periodic. The inverse of a unimodular matrix is a unimodular
matrix. We say that a linear transformation Ξ on Rd is an acceptable dilation for Zd if it
leaves Zd invariant, i.e., ΞZd ⊂ Zd, and all the eigenvalues of Ξ satisfy |λi| > 1. Equivalently,∥∥∥Ξ− j

∥∥∥ → 0 as j → ∞ for some or any matrix norm. This implies in particular that, as j
increases, Ξ− jZd tends to Rd.
An acceptable dilation Ξ is such that | det Ξ| is an integer ≥ 2. Ξ ∈ Zd×d is also called expand-
ing matrix or scaling matrix. We say that an expanding matrix is anisotropic if at least two
eigenvalues have different modulus.

2.2. Shear dilation matrices
Shearlet scaling matrices are given by the interaction between a diagonal expanding matrix
with integer entries and a pseudo rotation matrix. The diagonal expanding matrix gives a par-
ticular anisotropic dilation called, in the shear literature, parabolic scaling, typically taking
the form

D2 =

(
4Ip 0
0 2Id−p

)
, p ≤ d. (4)

The pseudo rotation matrix on Rd, the so called shear matrix, is defined in block form as

S W =

(
Ip W
0 Id−p

)
, W ∈ Rp×(d−p), p ≤ d. (5)
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Shear matrices on Zd are unimodular matrices satisfying the following property (see [8])

S −W = S −1
W (6)

More in general we have

S jW = S j
W and S WS W′ = S W+W′ . (7)

The scaling matrix has then the form

M(W) = D2S W .

The unimodular matrix S W and the parabolic scaling matrix D2 obey to the following rule
that we call pseudo-commuting property

D2S W = S 2
W D2. (8)

In fact

D2S W =

(
4Ip 0
0 2Id−p

) (
Ip W
0 Id−p

)
=

(
4Ip 4W
0 2Id−p

)
=

(
Ip 2W
0 Id−p

) (
4Ip 0
0 2Id−p

)
= S 2W D2 = S 2

W D2.

§3. Pseudo-commuting property

The pseudo-commuting property (8) is crucial in subdivision schemes, as it allows to give
explicit formulas for the iterated matrices and hence to know the sampling grid for the signal
to be analysed. In fact, if we consider a stationary subdivision scheme with scaling matrix
M(W), relations and (7) and (8) give after j iterations

M(W) j =

j∏
i=1

(D2S W )

= D2S W · D2S W . . .D2S W · D2S W · D2S W

= D2S W · D2S W . . .D2S W · D2S WS 2W D2

= D2S W · D2S W . . .D2S W · D2S 3W D2

= D2S W · D2S W . . .D2S W · S 6W D2
2

...

= S `W D j
2 = S `

W D j
2, (9)
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with ` =
∑ j

i=1 2i. And thus M(W)−1
j = D− j

2 S −`W where S −`W is a unimodular matrix. Then

M(W)−1
j Z

d = D− j
2 S −`W Z

d = D− j
2 Z

d. Hence we need to know the signal on the simpler grid

D− j
2 Z

d.
From the previous arguments, the following question arises: given a diagonal anisotopic
expanding matrix D ∈ Zd×d, is it possible to find some n ∈ N, and a unimodular matrix A,
such that

DA = AnD? (10)

Or more in general is it possible to find m, n ∈ N, such that

DAm = AnD? (11)

§4. Matrices satisfying a pseudo commuting property

In this section we show that, given a diagonal expanding and anisotropic matrix D, it is always
possible to determine a unimodular matrix A that pseudo-commutes with D.
First we consider in §4.1 and in §4.2 the cases d = 2 and d = 3 which have an immediate
relevance in applications, and in §4.3 the case d > 3.

4.1. case d = 2

In what follows we need some results on the powers of unimodular matrices that are recalled
in Appendix 5.1.

Theorem 1. Let

D =

(
kr 0
0 k

)
∈ Z2×2, r ∈ Q+ \ {1}, (12)

be an anisotropic diagonal expanding matrix. Let A ∈ Z2×2 be a non-diagonal unimodular
matrix, and DA = AnD for some n. Then A has one of the following forms

• A = ±

(
1 w
0 1

)
and necessarily r = n;

• A = ±

(
1 0
w 1

)
and necessarily r = 1

n .

If trace(A) < 0, n must be odd.

Proof. The assumption DA = AnD implies that D−1AD = Dn. Let

A =

(
a b
c d

)
,

then

DAD−1 =

(
kr 0
0 k

) (
a b
c d

) ( 1
kr 0
0 1

k

)
=

(
a rb
c
r d

)
.

Let t := trace(A)/2. Being A unimodular (see Lemma 5), we get

An = Un−1(t)A − Un−2(t)I if det(A) = 1, (13)
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An = Pn−1(t)A + Pn−2(t)I, if det(A) = −1, (14)

where Un are the Chebyshev polynomials of second kind, and Pn are the Pell polynomials.
Let us consider the case det(A) = 1. Relation (13) gives

An =

(
aUn−1(t) − Un−2(t) bUn−1(t)

cUn−1(t) dUn−1(t) − Un−2(t)

)
. (15)

The corresponding elements of An and of DAD−1 have to be equal. For the non diagonal
entries, we must impose

bUn−1(t) = br, cUn−1(t) = c/r. (16)

The two relation are both satisfied in the trivial case b = c = 0. In the non trivial case, the
assumption on D, forces b = 0 or c = 0, and being A unimodular, we have a = d = 1 and
t = 1, or a = d = −1 and t = −1. When t = 1, Un−1(1) = n (see Lemma 6), then r = n,
otherwise if t = −1 we obtain Un−1(−1) = (−1)n−1n = r.
Let us consider the diagonal elements, we must impose

aUn−1(t) − Un−2(t) = a, dUn−1(t) − Un−2(t) = d. (17)

Summing the two equations we get 2tUn−1(t) − 2Un−2(t) = 2t that, using the recurrence
relation (38), becomes

Un(t) − Un−2(t) = 2t. (18)

If t = 1, (18) is is always verified. If t = −1, condition (18) becomes (−1)n(n+1)−(−1)n−2(n−
1) = −2, and it is satisfied when n is odd. In this case, Un−1(−1) = (−1)n−1n gives again n = r,

and all admitted matrices are thus A =

(
±1 w
0 ±1

)
, for any ω ∈ Z. We now consider b = 0

and c , 0. As before, t = 1 or t = −1. In this case, (16) forces Un−1(t) = n = 1/r and all

admitted matrices are thus A =

(
±1 0
w ±1

)
, for any ω ∈ Z.

All such matrices are, up to a sign, shear matrices, verifying DA = AnD (only for odd values
of n in case the t = −1).
The case det(A) = −1 uses the same arguments but with the Pell’s polynomials Pi (see relation
(14)) and it is easy to show that it provides only trivial cases. �

We observe that the exponent n depends on the anisotropicity ratio of the elements of D,
and that among the matrices D of the form (12), we find the parabolic dilation matrix D2
(r = n = 2 and k = 2) which is also the matrix of this class with the smallest determinant.
As a final note, if A verifies DA = AnD, then AT undergoes the dual relation

AT D = D(AT )n.

Thus a dual version of Theorem 1 can be given by using the dual relation

DAn = AD.

We turn now to the more general relation DAm = AnD, m > 1.
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Theorem 2. Let

D =

(
α 0
0 β

)
∈ Z2×2 (19)

be an anisotropic expanding matrix and A ∈ Z2×2 be a non-diagonal unimodular matrix. The
identity

DAm = AnD, (20)

is satisfied if

(1) Aq = I, and m, n such that m = `1q, n = `2q, for some `1, `2 ∈ Z;

(2) D =

(
rβ 0
0 β

)
, m, n such that r =

n
m
, and A = ±

(
1 w
0 1

)
;

(3) D =

(
rβ 0
0 β

)
, m, n such that r =

m
n
, and A = ±

(
1 0
w 1

)T

.

In the two last cases, trace(A) < 0 implies n − m ∈ 2Z.

Proof. Case (1) is trivially satisfied and implies that m = n + `q for some ` ∈ Z. The assump-
tion DAm = AnD implies that D−1AmD = An. Let

A =

(
a b
c d

)
, b , 0 and/or c , 0.

From Lemma 5, we know that either

An =

(
aUn−1(t) − Un−2(t) bUn−1(t)

cUn−1(t) dUn−1(t) − Un−2(t)

)
or

An =

(
aPn−1(t) + Pn−2(t) bPn−1(t)

cPn−1(t) dPn−1(t) + Pn−2(t)

)
,

depending on the sign of det(A), where t = trace(A)/2, Un are the Chebyshev polynomials of
second type and Pn are the Pell polynomials.
If det(A) = 1,

DAmD−1 =

(
aUm−1(t) − Um−2(t) bα

β
Um−1(t)

c β
α

Um−1(t) dUm−1(t) − Um−2(t)

)
.

The diagonal and the off–diagonal elements of A have to satisfy

aUm−1(t) − Um−2(t) = aUn−1(t) − Un−2(t), dUm−1(t) − Um−2(t) = dUn−1(t) − Un−2(t), (21)

bUn−1(t) = b
α

β
Um−1(t), cUn−1(t) = c

β

α
Um−1(t). (22)

First, let us assume that Um−1(t) = 0, which implies that either t = 0, i.e., d = −a, and m ∈ 2N
or t = ± 1

2 and m ∈ 3N.
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In the first case, the eigenvalues of A are ±i, hence A2 = −I and A4 = I, i.e. A is 4−periodic. In
addition, Un−1(0) = 0, and the equality of the diagonal elements yield Un−2(0) = Um−2(0)(,
0). By Lemma 6, n = m + 4` for some ` ∈ Z.
If m ∈ 3N and t = 1/2, the characteristic polynomial χ(A) of A, satisfies

0 = χA(A) = A2 − 2tA + det(A) I = A2 − A + I, (23)

hence A2 = A − I, A3 = A2 − A = −I and therefore A6 = I, that is A is 6−periodic. Now we
have, Un−1( 1

2 ) = 0, and Un−2( 1
2 ) = Um−2( 1

2 )(, 0). By Lemma 6 we get n = m + 6` for some
` ∈ Z. In the same way, m ∈ 3N and t = −1/2 yield A3 = I and n = m + 3` for some ` ∈ Z.
Then if A is such that Um−1(t) = 0, A is a periodic matrix of order q (q = 3, 4, 6) and m, n
such that n = m + q` for some ` ∈ Z, (case (1)).
Next, let us assume that Um−1(t) , 0. If bc , 0, (22) yields

Un−1(t)
Um−1(t)

=
α

β
and

Un−1(t)
Um−1(t)

=
β

α

contradicting the assumption D is anisotropic. Hence either b = 0 or c = 0 and then t ∈
{−1, 1}. Summing the identities (21) for the diagonal elements into

2tUn−1(t) − 2Un−2(t) = 2tUm−1(t) − 2Um−2(t)

and using (38), we get
Un(t) − Un−2(t) = Um(t) − Um−2(t), (24)

which is always satisfied if t = 1. In the case t = −1, Lemma 6 implies that n = m + 2` for

some ` ∈ Z. If b , 0 and c = 0, A = ±

(
1 w
0 1

)
for some w ∈ Z, and (22) gives

Un−1(t)
Um−1(t)

=
n
m
.

then α, β need to be such that the ratio r := α
β

= n
m (case (2)) that means

D =

(
rβ 0
0 β

)
.

While if b = 0 and c , 0, A = ±

(
1 w
0 1

)T

, and the previous arguments hold with r := α
β

=

m
n , (case (3)).
If det(A) = −1, we perform identical computations with the Pell polynomials, where the
situation is simpler since Pell polynomials have real zeros only for odd orders and t = 0.
Going on as in the case det(A) = 1, the identities of the diagonal elements give

Pn(t) + Pn−2(t) = Pm(t) + Pm−2(t). (25)

If we assume that Pm−1(t) = 0, m must be even, leading to A2 = I (see (23)) and (25) forces
n even. If Pm−1(t) , 0, again bc , 0 contradicts the assumption on D. As before b = 0 or
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c = 0, also in this case t = 0 and then m odd. The identity (25) (see Lemma 6) is satisfied
only when also n is odd. But now the ratio Pn−1(0)/Pm−1(0) is equal to one and then α = β,
which contradicts the assumption on D.
We conclude that in the case det(A) = −1, the identity (20) holds when A is periodic of order
two and m, n even. �

4.1.1. Example

For D =

(
3 0
0 2

)
we have r = 3

2 , m = 2, n = 3 and

DA2 = A3D

where A =

(
1 w
0 1

)
.

Remark 1. The unimodular matrices A ∈ Zd×d that can pseudo-commute with D are only (up
to a sign) the shear matrices when m = 1 and shear (up to a sign) or periodic matrices when
m > 1.

4.2. The case d = 3

We want to see what happens when d = 3. In this case we focus on m = 1 and on matrices D
of the form

D =

 krs 0 0
0 kr 0
0 0 k

 , r, s ∈ Q+, (r, p) , (1, 1). (26)

We start by considering unimodular matrices A of the form(
B v
0 λ

)
or

(
λ vT

0 B

)
(27)

where B is a 2 × 2 matrix, v is a column vector of dimension 2.
We observe that det(A) = λ det(B), A unimodular implies B unimodular and |λ| = 1. In what
follows we consider, for the sake of brevity,(

B v
0 λ

)
, (28)

and it easy to show that the results of Proposition 3 hold also for(
λ vT

0 B

)
,

via an exchange of the roles of s and r. The block form of A allows to write explicitly the nth
power of A.

An =

 Bn
(∑n−1

i=0 (λ)n−1−iBi
)

v
0 (λ)n

 (29)
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Let us write

D =

(
D 0
0 k

)
, (30)

where D =

(
krs 0
0 kr

)
. The identity DA = AnD is equivalent to DAD−1 = An, and

DAD−1 =

 DBD
−1

Dv/k
0 λ

 . (31)

If s = 1, D takes the form

D =

(
krI2 0

0 k

)
(32)

and

DAD−1 =

(
B rv
0 λ

)
. (33)

In the following proposition, we characterize a matrix A of the form (28) satisfying DA =

AnD.

Proposition 3. Let D of the form (26), and A as (28). The pseudo-commuting property

DA = AnD holds when A =

(
B v
0 λ

)
has one of the following forms

(i) v = 0, λ = ±1, B a shear matrix (up to a sign), s = n or B n−periodic and s = 1 (if
λ = −1, n is odd);

(2i) for some v , 0

(2i.1) λ = 1, B = ±

(
1 w
0 1

)
, s = n, and r = 1 or r = n;

(2i.1.1) λ = 1, B = ±

(
1 w
0 1

)T

, s = 1
n , and r = 1 or r = 1

n ;

(2i.2) λ = −1, B = ±

(
1 w
0 1

)
, s = n(odd), and r = 1 or r = 1

n ;

(2i.2.1) λ = −1, B = ±

(
1 w
0 1

)T

, s = 1
n (n odd), and r = 1 or r = n;

(2i.3) λ = 1, B a n−periodic matrix such that Bv = v, s = 1, and r = n.

Proof. To get the proof, we need to equate the blocks in (29) and(31). In all cases DBD
−1

=

Bn, is verified (see Theorem 1) when s = n and B = ±

(
1 w
0 1

)
, s = 1

n and B = ±

(
1 w
0 1

)T

or when D = krI2, which means s = 1 and B = Bn, i.e B a n− periodic unimodular matrix. If
v = 0, the conditions (i) are trivially satisfied. If v , 0, let us consider the case λ = 1, s = n,

B = ±

(
1 w
0 1

)
. For instance B =

(
1 w
0 1

)
, we exploit the property (7) and the equality
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∑n−1
i=0 Biv = Dv/k becomes

Cv :=
(

rn 0
0 r

)−1 (
n n(n−1)

2 w
0 n

)
v = v, (34)

that is satisfied when v eigenvector corresponding to the eigenvalue 1 of C =

(
1
r

(n−1)
2r w

0 1
r

)
that occurs when r = 1 or r = n. The case s = 1/n is left to the reader.

Now we consider λ = −1, n has to be odd and, from (7),
∑n−1

i=0 (−1)iBi =

(
1 (n − 1)w
0 1

)
.

The matrix C is now
( 1

rn (n − 1)w
0 1

r

)
, and the equality

∑n−1
i=0 Biv = Dv/k is satisfied by

choosing r = 1 or r = 1/n and v eigenvector of C corresponding to the eigenvalues 1 of C.
The case s = 1/n is left to the reader. Let us conclude with the last case s = 1, B n−periodic
such that Bv = v. Then

Bi c = Bi(Bv) = Bi+1v = Bi+1(B v) = Bi+2v = · · · = Bn−1v = v.

If λ = 1,
∑n−1

i=0 v = nv and Dv/k = rv, then r = n. The case λ = −1 leads to r = 1 which
contradicts the assumption D anisotropic. �

4.2.1. Example

As an example, consider k = 2, r = 3, s = 1, n = 3, and

D =

 6 0 0
0 6 0
0 0 2

 , B =

(
5 3
−8 −5

)
,

with det(B) = −1, B2 = I, v = (6 − 8)T , then

A =

 5 3 6
−8 −5 −8
0 0 1


is such that DA = A3D.
D of the form (26) and A unimodular with at least one zero non diagonal element pseudo-
commute (see [6]) when A takes the form (i) or (2i). Moreover, if A is a generic matrix and
s = 1 ( D of the form (32)), again A and D pseudo-commute if A is of the form (i) or (2i). We
conjecture that in general for any D as in (26), the pseudo-commuting property is satisfied
only when A assumes one of the forms allowed by Proposition 3.

4.3. The case d > 3

Proposition 4. Let d > 3 and consider

D :=
(

krIp 0
0 kId−p

)
, (35)
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and let

A =

(
B W
0 Id−p

)
, (36)

where B ∈ Zp×p is a unimodular n−periodic matrix, W ∈ Zp×(d−p), and Bn−1 W = W. Then the
relation DA = AnD holds if r = n.

Proof. We have that

DAD−1 =

(
B rW
0 Id−p

)
, An =

(
Bn (

∑n−1
j=0 B j)W

0 Id−p

)
(37)

From the assumptions on B

Bi W = Bi(B W) = Bi+1W = Bi+1(B W) = Bi+2W = · · · = Bn−1W = W.

Then

(
n−1∑
i=0

Bi)W = nW,

and

An =

(
Bn nW
0 Id−p

)
.

Taking r = n, the relation AD = DAn is satisfied. �

Therefore we have a simple mechanism to obtain non-shear matrices A satisfying DA = AnD
for some diagonal matrix (35): take r so that r = n, B such that Bn = B, with λ = 1 as
eigenvalue with d − p linear independent eigenvectors and juxtapose those as columns of W.
In this way B W = W and we can build A via (36).
Note that choosing B = Ip we get a shear matrix.

§5. Appendix

5.1. Powers of unimodular matrices
The main tools for powers of unimodular matrices are Chebyshev polynomials of second kind
Ui(t), and Pell polynomials Pi(t). The first ones are obtained by the recurrence relation

Ui(t) = 2tUi−1(t) − Ui−2(t), i ≥ 2, (38)

initialized with U0(t) = 1, U1(t) = 2t, the second ones by

Pi(t) = 2tPi−1(t) + Pi−2(t), i ≥ 2, (39)

with Pi = Ui, i = 0, 1.
The relation between matrices and polynomials is established by the following lemma, whose
first statement is cited in [2] and which is easily verified by induction.



40 Mira Bozzini, Daniele Ghisi, Milvia Rossini and Tomas Sauer

Lemma 5. If A ∈ Z2×2 satisfies det(A) = 1 then An = Un−1(t)A − Un−2(t)I, if det(A) = −1
then An = Pn−1(t)A + Pn−2(t)I, where t := trace(A)/2.

Some more properties of the polynomials, which are also easily verified by induction (see
[6]), are listed in the following lemma.

Lemma 6.

1. Un(±1) = (±1)n(n + 1).

2. Un(0) =


0 if n = 2m + 1
1 if n = 4m
−1 if n = 4m + 2

3. Un(1/2) =


1 if n = 6m or n = 6m + 1
0 if n = 6m + 2 or n = 6m + 5
−1 if n = 6m + 3 or n = 6m + 4

4. Un(−1/2) =


1 if n = 3m
−1 if n = 3m + 1
0 if n = 3m + 2

5. Pn(0) =

1 if n = 2m
0 if n = 2m + 1
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