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SOME PROPERTIES ON THE Q-TENSOR
SYSTEM
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Abstract. We study the coupled Navier-Stokes and Q-Tensor system (analyzed in cf. [8]
in the whole R3) in a bounded three-dimensional domain for several boundary conditions,
rewriting the system in a way that properties as symmetry and null-trace for the tensor Q
can be proved. We show some analytical results such as: the existence of global in time
weak solution, a maximum principle for the Q-tensor, local in time strong solution (which
is global assuming an additional regularity criterion for the velocity in the space-periodic
boundary condition case), global in time strong solution imposing dominant viscosity (for
the space-periodic or homogeneous Neumann boundary condition cases) and regularity
criteria for uniqueness of weak solutions.

Keywords: Q-Tensor, Navier-Stokes equations, symmetry, weak solution, strong solution,
uniqueness.
AMS classification: (2010) 35A01, 35A02, 35Q35, 76D03.

§1. The model of Q-Tensor and main results

1.1. The model

Liquid crystals can be seen as an intermediate phase of matter between crystalline solids and
isotropic fluids. Nematic liquid crystals (N) consist of molecules with rod-like shape whose
center of mass is isotropically distributed and whose direction is almost constant on average
over small regions. Several (N) are described through the velocity and pressure (u, p) and the
director vector d (cf. [3]). However, the optic of the liquid crystals can be uniaxial (points
have one single refractive index), biaxial (points have two indices of refraction) or isotropic
(orientation of molecules is equally distributed in all directions). Only uniaxial liquid crystals
can be described by the (u, p, d)-systems. Isotropic regions within the liquid crystal material
are also called “defect patterns”.

The Q-Tensor model proposes a new formulation in order to describe the three types of
optic for (N). The director vector field d ∈ R3 is replaced by the tensor Q ∈ R3×3, which is
related to the second moment of a probability measure that describes the orientation of the
molecules . Concretely (cf. [3]), Q is based on a probability measure µ(x, ·) : L(S2)→ [0, 1]
for x ∈ Ω that describe the orientation of the molecules, being L(S2) the family of Lebesgue
measure sets on the unit sphere. In such a way, µ(x, A) is the probability that the molecules
with centre of mass in a very small neighborhood of the point x ∈ Ω are pointing in a direction
contained an A ⊂ S2. This probability must satisfy µ(x, A) = µ(x,−A) in order to reproduce
the "head-to-tail” symmetry. As a consequence the first moment of the probability measure
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vanishes, 〈p〉 =

∫
S2

pi dµ(p) = 0, and the information on µ comes from the tensor of the

second moment M(µ)i j =

∫
S2

pi p j dµ(p), i, j = 1, 2, 3. Is is easy to see that M(µ) = M(µ)t

and tr(M) = 1. If the orientation of the molecules is equally distributed, then the distribution
is isotropic and µ = µ0, dµ0(p) = 1

4π dA and M(µ0) = 1
3 Id. The de Gennes order-parameter

tensor Q measures the deviation of the second moment tensor from its isotropic value and is
defined as:

Q = M(µ) − M(µ0) =

∫
S2

(
p ⊗ p −

1
3

Id
)

dµ(p) (1.1)

Between the properties that definition (1.1) implies we have that Q is symmetric and
traceless. These properties are assumed for the solution of the model studied by Paicu and
Zarnescu in [8] (a more complete model is studied in [7]). However, they cannot be deduced
from the model. Here, we revise the writing of the Q-tensor model maintaining the essential
terms given in [8] but rewriting some of them appropriately to obtain the symmetry and
traceless properties.

We shall study the following model (QT ) for the unknowns (u,Q, p) : (0,T ) × Ω →

R3 × R3×3 × R, where the velocity and the pressure (u, p) verify: Dtu − ν∆u + ∇p = ∇ · τ(Q) + ∇ · σ(H,Q) in Ω × (0,T )

∇ · u = 0 in Ω × (0,T )
(1.2)

being Dt = ∂tu + (u · ∇)u the material derivative, ν > 0 is the viscosity coefficient and the
tensors τ = τ(Q) and σ = σ(H,Q) are defined by τi j(Q) = −ε

(
∂ jQ : ∂iQ

)
= −ε ∂ jQkl ∂iQkl, ε > 0 (symmetric tensor)

σ(H,Q) = H Q − Q H (antisymmetric tensor if Q and H are symmetric)

with H = H(Q) = −ε∆Q + f (Q) for

f (Q) = a Q −
b
3

(
Q2 + QQt + QtQ

)
+ c |Q|2 Q with c > 0, a, b ∈ R,

where we denote by Q : Q = |Q|2 the matricial euclidean norm. The tensor is governed by
the system:

DtQ − S (∇u,Q) = −γH(Q) in Ω × (0,T ) (1.3)

where S (∇u,Q) = ∇u Qt − Qt ∇u (called the stretching term), γ > 0 is a material-dependent
elastic constant. The tensor H is the variational derivative in L2(Ω) of a free energy functional
E(Q), i.e.

H =
δE(Q)
δQ

, E(Q) =
ε

2
|∇Q|2 + F(Q)

where function F(Q) is defined as

F(Q) =
a
2
|Q|2 −

b
3

(Q2 : Q) +
c
4
|Q|4 (1.4)
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Note that F(Q) is not a convex function (excepting the case a > 0 and b = 0) but its more
nonlinear part

c
4
|Q|4 is convex and F(Q)→ +∞ as |Q| → +∞.

Finally, we are going to close the system with the following initial and boundary condi-
tions over Γ = ∂Ω:

u|t=0 = u0, Q|t=0 = Q0 in Ω, (1.5)

u|Γ = 0 and ∂nQ|Γ = 0 or Q|Γ = QΓ or (u,Q) space-periodic in (0,T ). (1.6)

In the present work we want to study several questions related to the existence, uniqueness
and regularity for the Q-tensor. In the next subsection, the main results will be stated. The
proofs will be sketched in the following sections: In Section 2, we will obtain an energy
law and prove the existence of weak solution (Theorem 1). A maximum principle will be
obtained in Subsection 2.3 (proof of Lemma 2). In Section 3, the proofs of Theorem 3 and
Theorem 4 will be sketched. A weak/strong uniqueness is proved in Section 4 (Theorem
5). A modification of (1.2)-(1.3) implying traceless and symmetry for Q will be deduced in
Subsections 5.1 and 5.2. The existence of solution, regularity and uniqueness for the modified
model is quickly analyzed in Subsection 5.3.

1.2. The main results
The precise results on existence, regularity and uniqueness of solution for (1.2)-(1.3) can be
seen below:

Theorem 1 (Weak solution). Assuming (u0,Q0) ∈ L2(Ω) × H1(Ω) with ∇ · u0 = 0 and
u0 · n|Γ = 0. Then, there exists a weak solution (u,Q) of the system (1.2)-(1.3)-(1.5)-(1.6) in
the sense of Definition 1 (see Subsection 2.1).

The maximum principle will play an important role in most of the following results.

Lemma 2 (Maximum principle). For a given real positive number α big enough and de-
pending on the coefficients (a, b, c) of the function f (Q) such that α2 ≥ b2

c2 −
2a
c , a function

u ∈ L2(0,T ; V)∩ L∞(0,T ; H) (0 < T ≤ +∞) and Q0 ∈ H1(Ω) . Let Q be any solution for the
Q-problem, i.e. Q ∈ L∞(0,T ; H1(Ω)) ∩ L2(0,T ; H2(Ω)) satisfying (1.3). If |Q0| ≤ α a. e. in
Ω (and Q|Γ = QΓ with |QΓ| ≤ α a. e. on Γ in the Dirichlet boundary case), then, |Q(x, t)| ≤ α
a.e. in Ω × (0,T ).

Next two results are related to strong solution for the system (i. e. weak solution with the
additional regularity (3.1), see Section 3 below). The first one is only possible in the space-
periodic case because in the Dirichlet and Neumann cases some boundary integral terms do
not vanish and cannot be controlled with strong norms.

Theorem 3 (Regularity criteria in velocity for space-periodic boundary conditions). As-
suming (u0,Q0) ∈ H1(Ω) × H2(Ω) with ∇ · u0 = 0 and space-periodic boundary conditions
for (u,Q). Let (u,Q) be a weak solution of the Q-Tensor system (1.2)-(1.3) in (0,T ) and ∇u
has the additional regularity ∇u ∈ L2(0,T ; L3(Ω)). Then, (u,Q) is the unique strong solution
of the system in (0,T ). On the other hand, without assuming the additional regularity, one
has the local in time strong regularity.
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Theorem 4 (Global in time strong solution with big viscosity). Assuming (u0,Q0) ∈
H1

0(Ω) × H2(Ω) with ∇ · u0 = 0 and homogeneous Neumann for Q or space-periodic bound-
ary conditions for (u,Q). Let (u,Q) be a weak solution of the Q-Tensor system (1.2)-(1.3)
in (0,T ). Imposing ν > 0 a big enough viscosity for (1.2), then, (u,Q) is the unique strong
solution of the system in (0,T ).

Remark 1. The Dirichlet boundary condition case for (u,Q) is treated in [5].

Next uniqueness result improves the regularity criteria appearing in [10] (for the nematic
liquid crystal model with stretching terms), and moreover it does not use the maximum prin-
ciple in the proof.

Theorem 5 (Regularity criteria for uniqueness). Assuming (u0,Q0) ∈ L2(Ω)×H1(Ω) with
∇ · u0 = 0 and u0 · n|Γ = 0. Let (u,Q) be a weak solution of the Q-Tensor system (1.2)-(1.3)-
(1.5)-(1.6) in (0,T ) such that ∇u has the additional regularity ∇u ∈ L2(0,T ; L3(Ω)) and ∆Q
has the additional regularity ∆Q ∈ L4(0,T ; L2(Ω)). Then, this solution coincides in (0,T )
with any weak solution associated to the same data.

§2. Existence of weak solution

2.1. Variational formulation

Taking into account that ∂iF(Q) = F′(Q) : ∂iQ = f (Q) : ∂iQ, the symmetric tensor can be
rewritten as:

(∇ · τ)i = −ε ∂ j

(
∂ jQ : ∂iQ

)
= −ε∆Q : ∂iQ − ε∂ jQ : ∂2

i jQ

= H(Q) : ∂iQ − ∂i

(
F(Q) +

ε

2
|∇Q|2

)
,

(2.1)

where |∇Q|2 = ∂ jQ : ∂ jQ. Then, testing (1.2) by (ū, p̄), we arrive at the following variational
formulation of (1.2):

(Dtu, ū) + ν(∇u,∇ū) − (q,∇ · ū) − ((ū · ∇)Q,H) + (σ(H,Q),∇ū) = 0,

∀ū with ū|∂Ω = 0

(∇ · u, p̄) = 0, ∀p̄

(2.2)

where q = p + F(Q) +
ε

2
|∇Q|2 is a new solenoidal function (including the pressure).

In which follows, it will be of great help the following Lemma:

Lemma 6. For any A, B, C ∈ M(Rn×n), the following identity holds:

AB : C = B : AtC and A : BC = ACt : B. (2.3)

Using Lemma 6, we obtain that S (∇u,Q) : H̄ = σ(H̄,Q) : ∇u. Indeed,

S (∇u,Q) : H̄ = (∇u Qt − Qt ∇u) : H̄ = ∇u : H̄Q − ∇u : QH̄ = ∇u : σ(H̄,Q)
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Therefore, testing (1.3) by H̄ and −ε∆Q + f (Q) = H by Q̄, we arrive at the following
variational formulation of (1.3): (∂tQ, H̄) + (u · ∇Q, H̄) − (∇u, σ(H̄,Q)) + γ (H, H̄) = 0

ε (∇Q,∇Q̄) + ( f (Q), Q̄) − (H, Q̄) = 0
(2.4)

Definition 1 (Weak solution). Considering the initial data (u0,Q0) ∈ L2(Ω) × H1(Ω) with
∇ · u0 = 0 and u0 · n|∂Ω = 0, we say that (u,Q) is a weak solution of the system (1.2)-(1.3) if:

u ∈ L∞(0,T ; L2(Ω)) ∩ L2(0; T ; H1(Ω))

Q ∈ L∞(0,T ; H1(Ω)) ∩ L2(0; T ; H2(Ω))

and satisfies (2.2) and (2.4).

2.2. Energy law

For a rigorous justification of the existence of a weak solution see [4]. Considering space-
periodic, homogeneous Neumann or stationary non-homogeneous Dirichlet boundary condi-
tions, we can obtain:

(∂tQ,H) = (∂tQ,−ε∆Q + f (Q)) = ε(∇(∂tQ),∇Q) + (∂tQ, F′(Q))

=
d
dt

(
ε

2
‖∇Q‖2L2(Ω +

∫
Ω

F(Q) dx
)

=
d
dt

∫
Ω

E(Q) dx.

Thus, taking (ū, p̄) = (u, p) in (2.2) and (H̄, Q̄) = (H, ∂tQ) in (2.4), the following “energy
equality" holds:

d
dt

(
1
2
‖u‖2L2(Ω) +

∫
Ω

E(Q) dx
)

+ ν‖∇u‖2L2(Ω) + γ‖H‖2L2(Ω) = 0. (2.5)

The obtaining of regularity bounds for (u,Q) cannot be directly obtained because of∫
Ω

E(Q) dx is not a positive term due to F(Q). But, we can define Fµ(Q) = F(Q) + µ with

µ = µ(a, b, c) big enough (see [4]) in such a way that:

Fµ(Q) ≥
c
8
|Q|4 ≥ 0 (2.6)

Therefore, replacing E(Q) by Eµ(Q) =
1
2
|∇Q|2 + Fµ(Q) ≥ 0 in (2.5), we can obtain some

estimates until infinite time. Indeed, assuming finite total energy of initial data, i.e.∫
Ω

Eµ(Q0) dx +
1
2
‖u0‖

2
L2(Ω) < +∞,
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(the boundeness of Ω, |Ω| < +∞, is here essential due to
∫

Ω

Fµ(Q0) dx =

∫
Ω

F(Q0) dx+µ|Ω|),

then the following estimates hold:

u ∈ L∞(0,+∞; L2(Ω)) ∩ L2(0,+∞; H1(Ω)),

∇Q ∈ L∞(0,+∞; L2(Ω))

H ∈ L2(0,+∞; L2(Ω))

Fµ(Q) ∈ L∞(0,+∞; L1(Ω))

(2.7)

In particular, from (2.6) and (2.7), we deduce:

Q ∈ L∞(0,+∞; L4(Ω)), Q ∈ L∞(0,+∞; H1(Ω)) ↪→ L∞(0,+∞; L6(Ω)) (2.8)

In order to finish the deduction of regularity for ∆Q, we remark that H(Q) = −ε∆Q+ f (Q)
and:

| f (Q)| ≤ C(a, b, c)
(
|Q| + |Q|2 + |Q|3

)
which together with (2.8):

f (Q) ∈ L∞(0,+∞; L2(Ω)) ⇒ ∆Q ∈ L∞(0 +∞; L2(Ω)) + L2(0,+∞; L2(Ω)).

Thus, for any finite time T > 0, we have that:

Q ∈ L2(0,T ; H2(Ω)) ∀T > 0.

Remark 2. The regularity for ∂tQ can be obtained taking into account the regularity for the
remaining terms appearing in the model (1.3). Concretely, we can get:

∂tQ ∈ L4/3(0,T ; L2(Ω)) (2.9)

Remark 3. Finally, in the case of time-dependent nonhomogeneous Dirichlet boundary con-
ditions for Q, we need to lift the boundary data. Using the following “elliptic" lifting function

−∆Q̃(t) = 0 in Ω, Q̃(t) = QΓ(t) on Γ

instead of (2.5) a modified energy equality holds for Q̂ = Q−Q̃, where some terms depending
on ∂tQ̃ appear on the right hand side of (2.5).

2.3. A maximum principle
Considering the inner product of the Q-system by Q and taking into account that the stretch-
ing terms vanish, we can obtain:

∂t

(
|Q|2 − α2

)
+u·∇

(
|Q|2 − α2

)
−γ ε∆

(
|Q|2 − α2

)
+2 γ f (Q) : Q ≤ 0 in Ω × (0,+∞) (2.10)

Testing (2.10) by ψ(Q) := (|Q|2 − α2)+ and integrating in Ω, we obtain:

d
dt
‖ψ(Q)‖2L2(Ω) + γ ε‖∇ψ(Q)‖2L2(Ω) − γ ε

∫
Γ

∂nψ(Q)ψ(Q) dσ + 2γ
∫

Ω

( f (Q) : Q)ψ(Q) dx ≤ 0

(2.11)
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because the boundary term −γ ε
∫

Γ

∂nψ(Q)ψ(Q) dσ vanishes. Note that in the case of Dirich-

let boundary condition Q|Γ = QΓ one has ψ(Q)|Γ = 0 (because |QΓ| ≤ α) and the case of
Neumann boundary condition ∂nQ|Γ = 0 one has ∂nψ(Q)|Γ = 0. Therefore, in both cases the
boundary integral term of (2.11) vanishes. An easy treatment of the potential term f (Q) leads
to:

‖ψ(Q(t))‖2L2(Ω) ≤ ‖ψ(Q0)‖2L2(Ω) = ‖
(
|Q0|

2 − α2
)
+
‖2L2(Ω) = 0,

hence the Maximum’s Principle ‖Q(t)‖L∞ ≤ α in (0,+∞) is deduced.

§3. Strong regularity

In this section, we will see some regularity results about the generic model for the Q-Tensor
system without necessarily imposing the restrictions of symmetry and traceless.

We want to prove some results associated to the existence of a strong solution for (1.2)-
(1.3), which is already a weak solution in the sense of Definition 1 that also verified the
stronger regularity:

u ∈ L∞(0,T ; H1
0(Ω)) ∩ L2(0,T ; H2(Ω)), Q ∈ L∞(0,T ; H2(Ω)) ∩ L2(0,T ; H3(Ω)) (3.1)

3.1. Space-periodic or homogeneous Neumann boundary conditions
We multiply (1.2) by Au and (1.3) by −∆H, obtaining:

(∇(∂tQ),∇H) + (∇(u · ∇Q),∇H) − (∇S (∇u,Q),∇H) + γ‖∇H‖2L2(Ω) = 0 (3.2)

and
1
2

d
dt
‖∇u‖2L2(Ω) + ν‖Au‖2L2(Ω) + (u · ∇u, Au) − (Au · ∇Q,H) + (σ(H,Q),∇(Au)) = 0 (3.3)

First, we analyze the terms presenting more difficulties to be treat. One of them is:

(∇∂tQ,∇H) =
1
2ε

d
dt
‖H‖2L2(Ω) − (∂t( f (Q)),H) + ε

∫
Γ

∂n(∂tQ) H dσ (3.4)

that needs to impose homogeneous Neumann boundary conditions ∂nQ|∂Ω = 0 or space-
periodic boundary conditions.

Remark 4. In the non-homogeneous Dirichlet boundary case, the boundary term in (3.4) does
not vanish because H|Γ , 0 due to the stretching term in (1.3).

In a second step, we try to control the terms −(∇S (∇u,Q),∇H) + (σ(H,Q),∇(Au)). On
the basis that

S (∇(∆u),Q) : H = σ(H,Q) : ∇(∆u) (3.5)

we would like to apply:

−(∇S (∇u,Q),∇H) = (∆S (∇u,Q),H) −
∫

Γ

∂nS (∇u,Q) H dσ

where, since S (·, ·) is quadratic,

∆S (∇u,Q) = S (∇(∆u),Q) + 2S (∇(∇u),∇Q) + S (∇u,∆Q).
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3.2. Sketch of the proof of Theorem 3

If the boundary term −
∫

Γ

∂nS (∇u,Q) H dσ disappear (as for the space-periodic boundary

conditions), some of the terms will vanish using (3.5) and the fact that for space-periodic
boundary conditions −∆u = Au holds. The remaining terms will have one of the following
forms:

J1 =

∫
Ω

|D2u||∇Q||H| dx, J2 =

∫
Ω

|∇u||∆Q||H| dx, J3 =

∫
Ω

|∇u||∇Q||∇H| dx,

J4 =

∫
Ω

|u||∇u||Au| dx, J5 =

∫
Ω

|u||∆Q||∇H| dx J6 =

∫
Ω

|u||∇Q||∆Q| dx

In summary, if the boundary term

−

∫
Γ

∂nS (∇u,Q) H dσ (3.6)

vanishes, adequate estimates can be obtained for the Ji-terms, i = 1, . . . , 6 (they were also
obtained by the authors cf. [2] and by Sun & Liu (cf. [9]). These estimates can be made in
two ways: one to obtain local in time strong estimates for (u,Q), and another one to obtain
global in time strong estimates for (u,Q) supposing additional regularity hypothesis over ∇u
and ∇Q.

In fact, calling y(t) = ‖H(t)‖2L2(Ω) + ‖∇u(t)‖2L2(Ω) and Y(t) = γ ‖∇H(t)‖2L2(Ω) + ν ‖Au(t)‖2L2(Ω),
we obtain (see cf. [4, 5],):
• looking for a local in time strong solution, an estimate of kind:

y′(t) + Y(t) ≤ C
(
y(t)3 + y(t) + 1

)
(3.7)

• looking for a global in time strong solution, assuming additional regularity hypothesis, we
get:

y′(t) + Y(t) ≤ a(t) y(t) + b(t) (3.8)

for a ∈ L1(0,T ) a function described in terms of the additional regularity hypothesis:

∇u ∈ L2(0,T ; L3(Ω)) and ∇Q ∈ L4(0,T ; L6(Ω)). (3.9)

Remark 5 (Non-Hilbertian regularity for ∇Q). We can argue as in the study for the
Nematic Liquid Crystal model (without stretching term) with periodic boundary conditions
given in [6]. Taking −∇ ·

(
|∇Q|p−2∇Q

)
as test function in (1.3), splitting f (Q) in two parts:

f (Q) = F′c(Q) + F′e(Q)

and considering space-periodic or homogeneous Neumann boundary conditions, we get:

2
p

d
dt
‖∇Q‖pLp(Ω) + γ ε

∫
Ω

|D2Q|2|∇Q|p−2 dx + γ ε (p − 2)
(

2
p

)2

‖∇(|∇Q|p/2)‖2L2(Ω)

+ c γ
∫

Ω

[
|Q|2|∇Q|p + 2 |∇Q|p−2 (Q : ∇Q)2

]
dx

≤ Cγ,ε

(
‖∇u‖

2q
2q−3

Lq(Ω)‖∇Q‖pLp(Ω) + ‖∇Q‖pLp(Ω)‖∇u‖
2q

2q−3

Lq(Ω) + ‖∇u‖
q(p−1)
2q−3

Lq(Ω)

)
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where an explicit study for the boundary terms appearing shows that they can also vanish
for homogeneous Neumann boundary conditions. Since q(p−1)

2q−3 ≤
2q

2q−3 if and only if p ≤ 3,
only assuming the additional regularity hypothesis for ∇u of (3.9) in particular we obtain
non-Hilbertian regularity for ∇Q when p = 3, that is,

∇Q ∈ L∞(0,T ; L3(Ω)) ∩ L3(0,T ; L9(Ω)).

Hence, ∇Q ∈ L4(0,T ; L6(Ω)).

Inequalities (3.7) and (3.8), together with Remark 5 allow to prove Theorem 3.

3.3. Ideas for the proof of Theorem 4
However, the conclusion for the system, supposing homogeneous Neumann boundary con-
ditions for Q cannot be assure because we do not know how to vanish (3.6). An alternative
way needs to estimate directly the terms −(∇S (∇u,Q),∇H) − (∇ · σ(H,Q), Au). This time,
instead of obtaining terms of type J1 and J2, we obtain terms as follows:

J6 =

∫
Ω

|D2u||Q||∇H| dx

which can be bounded as:

J6 ≤ C ‖Au‖L2(Ω)‖Q‖L∞(Ω)‖∇H‖L2(Ω) (3.10)

Observe that in any case we need to impose the following condition in order to guarantee the
existence of strong solution for the model:

ν >
2
γ
‖Q‖2L∞(Ω) (3.11)

which can be obtained assuming the viscosity ν is big enough (arriving to the conclusion of
Theorem 4). Similar estimates can be also seen in [1] (without stretching terms) and in [10]
(with stretching terms) for the nematic model.

§4. Regularity criterion for the uniqueness of the model

In order to obtain a regularity criterion for the uniqueness of the weak solution (in energy
norms), we decompose the term H(Q) in the following way:

H(Q) = −ε∆Q + F′c(Q) + F′e(Q) := Hc(Q) + F′e(Q) (4.1)

with Fc(Q) =
c
4
|Q|4 the convex part of F(Q) and Fe(Q) =

a
2
|Q|2−

b
3

(Q2 : Q) the non-convex
part.

Let (u1, q1,Q1,Hc(Q1)), (u2, q2,Q2,Hc(Q2)) be two solutions of the problem (1.2)-(1.3)
(recall that (Hc)i = −ε∆Qi + F′c(Qi)), and u = u1 − u2, q = q1 − q2, Q = Q1 − Q2, Hc =

Hc(Q1) − Hc(Q2). Using decomposition for H given in (4.1), taking into account that H =
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H(Q1) − H(Q2) can be decomposed as H = −ε∆Q + F′c(Q1) − F′c(Q2) + F′e(Q1) − F′e(Q2) =

Hc + F′e(Q1) − F′e(Q2)), and (2.1), then (u, q,Q,Hc) is the solution of the following problem
in Ω × (0,T ):

∂tu − ν∆u + ∇q + u1 · ∇u − (Hc : ∂iQ1)i − ∇ · σ(Q1,Hc)

= −u · ∇u2 +
(
(F′e(Q1) − F′e(Q2) : ∂iQ1

)
i + (H(Q2) : ∂iQ)i

+ ∇ · σ(Q1, F′e(Q1) − F′e(Q2)) + ∇ · σ(Q,H(Q2))

∇ · u = 0

∂tQ + γHc + (u · ∇)Q1 − S (∇u,Q1)

= −(u2 · ∇)Q − γ (F′e(Q1) − F′e(Q2)) + S (∇u2,Q)

−ε∆Q + F′c(Q1) − F′c(Q2) = Hc

(4.2)

Taking (u, q) as test function in (4.2)1−2, Hc as test function in (4.2)3 and Qt as test func-
tion in (4.2)4, the following terms cancel (like obtaining the energy law):

(u1 · ∇u,u) = 0, −(Hc : ∂iQ1,ui) + (u · ∇Q1,Hc) = 0,

(σ(Q1,Hc),∇u) − (S (∇u,Q1),Hc) = 0 (4.3)

A care treatment of the terms, specially those containing time-derivatives, leads to:

1
2

d
dt

(
‖u‖2L2(Ω) + ε ‖Q‖2H1(Ω) + c

∫
Ω

[
2 (R : Q)2 + |R|2 |Q|2

]
dx

)
+ν‖∇u‖2L2(Ω) + γ‖Hc‖

2
L2(Ω) ≤ C(t)

(
‖u‖2L2(Ω) + ‖Q‖2H1(Ω)

) (4.4)

with C ∈ L2(0,T ) having the form:

C(t) = C
(
‖∇u2‖

2
L3(Ω) + ‖u2‖

2
L3(Ω) + ‖∇Q1‖

2
L3(Ω) + ‖H(Q2)‖4L2(Ω) + ‖Rt‖L3/2(Ω)

)
(4.5)

where R ∈ (Q1,Q2), using the weak regularity of (u,Q), we need to impose the following
additional hypothesis to guarantee that C(t) ∈ L1(0,T ), which are:

∇u2 ∈ L2(0,T ; L3(Ω)), H(Q2) ∈ L4(0,T ; L2(Ω)) (4.6)

(thanks to (2.9), we have Rt ∈ L4/3(0,T ; L2(Ω))). Taking into account that:

H(Q2) = −ε∆Q2 + f (Q2),

the fact that Q2 ∈ L∞(0,T ; H1(Ω)), the additional regularity H(Q2) ∈ L4(0,T ; L2(Ω)) reduces
to:

∆Q2 ∈ L4(0,T ; L2(Ω)).
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§5. How to enforce the symmetry and traceless properties of Q

The traceless and symmetry for the model supposed by Paicu and Zarnescu in [7, 8] and
necessary for the description of Q (see Subsection 1.1) need to be inherent to the model.
Here, we slightly reformulate equation (1.3) in this way.

5.1. Rewriting H to obtain traceless of Q

We will use a modified expression from H that is written as:

H̃ = H + α(Q) I (5.1)

that allows to obtain tr(Q) = 0 for a certain scalar function α(Q) that we will choose below.
Observe that tr(S (∇u,Q)) = 0, tr(∂tQ) = ∂t tr(Q), tr(u · ∇Q) = u · ∇ tr(Q) and

tr(H) = −ε∆tr(Q) +
[
a + c |Q|2

]
tr(Q) −

b
3

(
tr(Q2) + 2|Q|2

)
.

Therefore, taking the trace of equation (1.3) and denoting φ = tr(Q), the following PDE for
φ holds:

∂tφ + u · ∇φ + γ

(
−ε∆φ +

(
a + c |Q|2

)
φ −

b
3

(
tr(Q2) + 2|Q|2

))
= 0 (5.2)

The term with coefficient b (which has no sign) and the term with a (that can be negative if
a < 0) are the main difficulties in order to get tr(Q(t)) = 0 ∀t ∈ (0,T ) whenever tr(Q0) = 0
(and tr(QΓ) = 0 when Dirichlet conditions for Q are assumed). Two possibilities can be
considered:

α1(Q) =
a
3

tr(Q) +
b
9

tr(Q2 + QQt + QtQ). (5.3)

α2(Q) = −
tr( f (Q))

3
I (5.4)

From (5.2), in both cases one has :

∂tφ + u · ∇φ − α∆φ ≤ 0, α > 0 (5.5)

endowed with the same boundary conditions as before. Assuming that φ(0) = 0, therefore
φ(t) = 0 ∀t. Thus, tr(Q(t)) = 0 for all t ≥ 0.

5.2. Rewriting S to obtain symmetry of Q

5.2.1. The new expression for the stretching term S (∇u,Q)

First, taking the transpose of equation (1.3) we look for the equation verified by Qt. Thanks
to the fact that |Q|2 = |Qt |2 it is easy to see that ( f (Q))t = f (Qt). Then, the term S (∇u,Q)t is
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splitting in two using that ∇u = D + W, for D = D(∇u) =
1
2

(
∇u + (∇u)t

)
(symmetric part

of ∇u) and W = W(∇u) =
1
2

(
∇u − (∇u)t

)
(antisymmetric part of ∇u), which leads to:

S (∇u,Q)t = −S (D,Qt) + S (W,Qt)

Thus,
S (∇u,Q) − S (∇u,Q)t = S (D,Q + Qt) + S (W,Q − Qt)

and considering the scalar product by Q − Qt (Q − Qt is antisymmetric):

S (D,Q + Qt) : (Q − Qt) , 0, S (W,Q − Qt) : (Q − Qt) = 0 (5.6)

One way to prove the symmetry of Q could be to consider an adequate system verified by
E = Q − Qt to deduce E(t) = 0 ∀t > 0 if E0 = 0 (and E|Γ = 0 in the Dirichlet case). In
general,

DtE − S (D,Q + Qt) − S (W, E) + γ(−ε∆E + f (Q) − f (Qt)) = 0 (5.7)

Taking E as test function in (5.7) and using that S (W, E) : E = 0, we obtain:

1
2

d
dt
‖E‖2L2(Ω) −

∫
Ω

S (D,Q + Qt) : E dx

+γ

(
a ‖E‖2L2(Ω) + c

∫
Ω

|Q|2 |E|2 dx + ε‖∇E‖2L2(Ω)

)
≤

2|b|
3

γ

∫
Ω

|Q||E|2 dx

(5.8)

To avoid the dependence on u in estimate (5.8), we consider the stretching term S does not
depend on D, replacing S (∇u,Q) by S (W,Q) in the differential system for Q. Thus, from
(5.8), choosing E(0) = 0, that is, assuming symmetric initial data Q0, we can conclude Q(t)
will be symmetric ∀t > 0.

5.2.2. The new expression for the tensor σ(Q,H)

Once the term S (∇u,Q) has been replaced by S (W,Q), then Q and H are symmetric. Now,
we have to modify the tensor σ(H,Q) for the energy law to be still valid. First, we decompose
both Q and H in their symmetric and antisymmetric parts:

Q = D(Q) + W(Q), D(Q) =
Q + Qt

2
, W(Q) =

Q − Qt

2

H = D(H) + W(H), D(H) =
H + Ht

2
, W(H) =

H − Ht

2
Remark 6. Observe that the symmetry of Q and H implies W(Q) = 0 and W(H) = 0.

Thus, using linearity,
σ(Q,H) = σ(D(Q),D(H))

which implies the antisymmetric character of the tensor σ(Q,H) in such a way that:

σ : D = 0 ⇒ σ : ∇u = σ : W = S (W,Q) : H
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5.3. Consequences of tr(Q) = 0 and symmetry of Q over the model
Considering α(Q) given by (5.3) or (5.4) and the stretching term equal to S (W,Q) (the tensor
σ(Q,H) is now antisymmetric), it is possible to reproduce every result on existence, unique-
ness and regularity for the model (1.2)-(1.3) to this new traceless and symmetric model.
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