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METHOD FOR SOLVING A STOCHASTIC
CONSERVATION LAW
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Abstract. This paper presents techniques introduced in a joint work with G. Vallet and P.
Wittbold for solving the Cauchy problem for a multi-dimensional nonlinear conservation
law with stochastic perturbation [2]. We propose to advance main difficulties in the use
of deterministic tools for studying stochastic P.D.E., and alternative methods.
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§1. Introduction

We are interested in the formal stochastic nonlinear conservation law of type:

du − div(f(u))dt = h(u)dw in Ω × Rd×]0,T [, (1.1)

with an initial condition u0 and d ≥ 1.
In the sequel we assume that T is a positive number, Q =]0,T [×Rd and that W =

{wt,Ft; 0 ≤ t ≤ T } denotes a standard adapted one-dimensional continuous Brownian mo-
tion, defined on the classical Wiener space (Ω,F , P). These assumptions on W are made for
convenience. Let us assume that

H1: f = ( f1, .., fd) : R→ Rd is a Lipschitz-continuous function and f(0) = 0.

H2: h : R→ R is a Lipschitz-continuous function with h(0) = 0.

H3: u0 ∈ L2(Rd).

We propose to present tools for showing existence and uniqueness result of the stochastic
entropy solution to the above-mentioned problem. Our aim is to adapt the known methods
for first-order nonlinear P.D.E. to noise perturbed ones.

Note that, even in the deterministic case, a weak solution to a nonlinear scalar conservation
law is not unique in general. One needs to introduce the notion of entropy solution in order
to discriminate the ”physical solution”.

Only few papers have been devoted to the study of multiplicative stochastic perturbation of
nonlinear first-order hyperbolic problems in the Rd case. Let us mention, without exhaustive-
ness, the work of J. Feng and D. Nualart [7] where they introduced a notion of strong entropy
solution in order to prove the uniqueness of the entropy solution for the Cauchy problem:

du + div(f(u))dt =

∫
z∈Z

σ(., u, z)dw(t, z).
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Using the vanishing viscosity and compensated compactness arguments, the authors estab-
lished existence of strong entropy solutions only in the 1D case.
In the recent paper [3], G.-Q. Chen, Q. Ding and K. H. Karlsen propose to revisit the work
of J. Feng and D. Nualart. They prove that the multidimensional stochastic problem is well-
posed by using uniform spatial BV-bound. They show the existence of strong stochastic
entropy solutions in Lp ∩ BV and develop a “continuous dependence” theory for stochastic
entropy solutions in BV .
Finally, let us mention the paper by A. Debussche and J. Vovelle [5] concerning the d-
dimensional problem with multiplicative noise

du + f (u)xdt = h(u)dw,

which is considered on a torus. The authors use the kinetic formulation of the problem and
prove existence and uniqueness of a kinetic solution.
The aim of C. Bauzet, G. Vallet and P. Wittbold in [2] is to complete those results by showing
existence and uniqueness of solution in the Rd case under weaker assumptions on the data,
with a ”Hilbert space” approach. The authors propose a method of artificial viscosity to
prove the existence of a solution. The compactness properties used are based on the theory
of Young measures and on measure-valued solutions. Then, an appropriate adaptation of
Kruzhkov’s doubling variables technique, and of the way J. Feng and D. Nualart propose to
treat the stochastic source term, is presented to prove that any stochastic entropy solution is
equal to a solution given by the artificial viscosity method. Thus, the entropy inequalities
seem to suffice for the uniqueness via Kato-type inequality. This yields the uniqueness of the
measure-valued entropy solution, and, by standard arguments, this allows to deduce existence
and uniqueness of the stochastic weak entropy solution.
We propose in this paper to present difficulties (brought by the stochastic perturbation) met
by the authors in the use of classical tools from the deterministic setting, and techniques
developed to treat the stochastic terms in [2].

First of all, we need to introduce some notations and make precise the functional setting.

• Denote by E the integral over Ω with respect to the probability measure P.

• For a given separable Banach space X we denote by N2
w(0,T, X) the space of the pre-

dictable X-valued processes (cf. [4]). This space is L2(]0,T [×Ω, X) endowed with the
product measure dt ⊗ dP and the predictable σ-field PT (i.e. the σ-field generated by
the sets {0} × F0 and the rectangles ]s, t] × A for any A ∈ Fs).

• E = {η ∈ C2,1(R), η ≥ 0, convex, η(0) = 0, supp η′′ compact}, the set of smooth
entropies.

• ηδ ∈ E denotes a uniform approximation of the absolute value function

η′δ(r) =


1 , r ≥ δ

sin
(
π
2δ r

)
, −δ < r < δ

−1 , r ≤ −δ.

• ∀η ∈ E, Fη(a, b) =

∫ b

a
η′(σ − a)f′(σ)dσ.
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• F(a, b) = S gn0(a − b)[f(a) − f(b)] = lim
δ→0+

Fηδ (a, b) denotes the entropy flux.

• ∀u ∈ N2
w(0,T, L2(Rd)), ∀k ∈ R, ∀η ∈ E and ∀ϕ ∈ D(Rd+1)

µu,η,k(ϕ) =

∫
Rd
η(u0 − k)ϕ(0)dx +

∫
Q
η(u − k)∂tϕ − Fη(u, k)∇ϕdxdt

+

∫
Q
η′(u − k)h(u)ϕdxdw(t) +

1
2

∫
Q

h2(u)η′′(u − k)ϕdxdt.

Definition 1. A function u of N2
w(0,T, L2(Rd)) is an entropy solution of the stochastic con-

servation law (1.1) with the initial condition u0 ∈ L2(Rd) if u ∈ L∞(0,T, L2(Ω, L2(Rd))) and,
for any ϕ ∈ D+([0,T ] × Rd), any real k and any η ∈ E

0 ≤ µu,η,k(ϕ) P − a.s.

And, ess lim
t→0+

E
∫

K
|u(t, x) − u0|dx = 0 for any compact set K ⊂ Rd.

Remark 1. The condition on the initial data comes from the regularity of the solution u ∈
L∞(0,T, L2(Ω, L2(Rd)), we can follow the idea of F. Otto [8], as here the random variable
doesn’t bring new difficulty.

§2. The parabolic case

The following existence and uniqueness result is a classic one. One can refer to [4] and many
others authors.

Proposition 1. For any positive ε, there exists a unique uε ∈ N2
w(0,T ; H1(Rd)) such that uε

is a weak solution of the stochastic nonlinear parabolic problem

duε − [ε∆uε + div(f(uε))]dt = h(uε)dw in Ω × Rd×]0,T [, (2.1)

with uε ∈ L∞(0,T ; L2(Ω × Rd)), ∂t[uε −
∫ .

0 h(uε)dw] and ∆uε in L2(Ω × Q) and for the initial
condition uε0 ∈ D(Rd).
Moreover, there exists a positive constant C such that,

∀ε > 0, ||uε ||2L∞(0,T ;L2(Ω×Rd)) + ε||uε ||2L2(]0,T [×Ω;H1
0 (Rd)) ≤ C.

Remark 2. We consider here (uε0)ε a sequence approximating our initial condition u0 in
L2(Rd). The regularities ∂t[uε −

∫ .

0 h(uε)dw] and ∆uε in L2(Ω × Q) are not obvious, they
come from the suitable choice of uε0 ∈ D(Rd). One refers to the work of G. Vallet [10].

Consider ϕ inD+(Q̄), k a real number and η ∈ E. Since η(uε −k)ϕ ∈ L2(0,T,H1(Rd)) a.s.,
it is possible to apply the Itô formula to the operator Ψ(t, uε) :=

∫
Rd η(uε − k)ϕdx and thus,

P-a.s.:
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∫
Rd
η(uε(T ) − k)ϕ(T )dx

=

∫
Rd
η(uε0 − k)ϕ(0)dx +

∫
Q
η(uε − k)∂tϕdxdt

−ε

∫
Q
η′′(uε − k)ϕ∇uε∇uεdxdt − ε

∫
Q
η′(uε − k)∇uε∇ϕdxdt

−

∫
Q
η′(uε − k)f(uε)∇ϕdxdt −

∫
Q
η′′(uε − k)ϕf(uε)∇uεdxdt

+

∫ T

0

∫
Rd
η′(uε − k)h(uε)ϕdxdw(t) +

1
2

∫
Q

h2(uε)η′′(uε − k)ϕdxdt.

Remark 3. Let us mention that in the deterministic setting, to propose a “viscous” entropy
formulation, we test the parabolic regularization in ũε with η(ũε − k)ϕ. In the stochastic
case, testing the parabolic regularization with η(uε − k)ϕ is the same thing as applying Itô’s
derivation formula with Ψ(t, uε) :=

∫
Rd η(uε − k)ϕdx. Notice that the stochastic perturbation

brings two new terms in this derivation formula: one containing an Itô integral, and another
one containing the second-order derivative of η.

Since the support of η′′ is compact, for any i = 1, . . . , d, R 3 r 7→ η′′(r − k) fi(r) is
a bounded continuous function. Then, thanks to the chain-rule for Sobolev functions, we
obtain the following viscous entropic formulation for any dP-measurable set A

0 ≤ E
[
1A

∫ T

0

∫
Rd
η′(uε − k)h(uε)ϕdxdw(t)

]
−εE

[
1A

∫
Q
η′(uε − k)∇uε∇ϕdxdt

]
+E

[
1A

∫
Rd
η(uε0 − k)ϕ(0)dx

]
+E

[
1A

∫
Q
η(uε − k)∂tϕ − Fη(uε , k)∇ϕ +

1
2

h2(uε)η′′(uε − k)ϕdxdt
]

:= E[1Aµ
ε
uε ,η,k(ϕ)].

(2.2)

§3. Entropic formulation

We would like to pass to the limit in (2.2) with respect to ε. Because of the random variable,
we are not able to use classical results of compactness. But the one given by the concept
of Young measure is appropriate here, and the technique is based on the notion of narrow
convergence of Young measures (or entropy processes), we refer to E.J. Balder [1] but also
to R. Eymard, T. Gallouët and R. Herbin [6].
Since uε is a bounded sequence inN2

w(0,T, L2(Rd)) and thanks to the compact support of ϕ in
Rd, the associated Young measure sequence uε converges (up to a subsequence still indexed in
the same way) to an “entropy process” denoted by u ∈ L∞(0,T, L2(Ω×Rd×]0, 1[)). Precisely,
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given a Carathéodory function Ψ(t, x, ω, λ) : Q × Ω × R → R such that Ψ(.,uε) is uniformly
integrable, one has:

E
∫

Q
ψ(.,uε)dxdt −−−→

ε→0
E

∫
Q

∫ 1

0
ψ(.,u(., α))dαdxdt.

By assumptions on η, all the integrands in the third line of (2.2) are uniformly integrable and
passing to the limit is possible in all the integrals. One is also able to pass to the limit in
the first term of (2.2) using the weak continuity of the stochastic integral from L2(Ω × Q) to
L2(Ω × Rd), see [4]. Finally, the a priori estimate on ∇uε yields that the second term of (2.2)
tends to 0 with ε.
Therefore at the limit one gets

0 ≤ E
[
1A

∫ T

0

∫
Rd

∫ 1

0
η′(u(., α) − k)h(u(., α))ϕdαdxdw(t)

]
+E

[
1A

∫
Rd
η(u0 − k)ϕ(0)dx

]
+E

[
1A

∫
Q

∫ 1

0

[
η(u(., α) − k)∂tϕ − Fη(u(., α), k)∇ϕ

]
dαdxdt

]
+

1
2

E
[
1A

∫
Q

∫ 1

0
h2(u(., α))η′′(u(., α) − k)ϕdαdxdt

]
.

Remark 4. Since (uε) is bounded in the Hilbert spaceN2
w(0,T, L2(Rd)), by identification, one

shows that uε ⇀
∫ 1

0 u(., α)dα in the same space, and so
∫ 1

0 u(., α)dα is a predictable process.
The interesting point is the measurability of u with respect to all its variables (t, x, ω, α).
Revisiting the work of E. Yu. Panov [9] with the σ-field PT ⊗ L(Rd), one shows that u is
measurable for the σ-field PT ⊗ L(Rd×]0, 1[).

Now a separability argument for the norm of H1(Q) yields the existence of a Young
measure solution in the sense of the following definition.

Definition 2. u ∈ N2
w

(
0,T, L2(Rd×]0, 1[)

)
∩ L∞

(
0,T, L2(Ω × Rd×]0, 1[)

)
is a (Young) mea-

sure-valued entropy solution of (1.1) with the initial data u0 ∈ L2(Rd) if for any η ∈ E and
any (k, ϕ) ∈ R ×D+([0,T ] × Rd),

0 ≤
∫ 1

0
µu,η,k(ϕ)dα, P − a.s.

And, ess lim
t→0+

E
∫

K×]0,1[
|u(t) − u0|dxdα = 0, for any compact set K ⊂ Rd.

§4. Local Kato inequality

The aim of this section is to discuss about the way of obtaining the following interior Kato
inequality, which permits to prove that the measure-valued solution is an entropy solution in
the sense of Definition 1.
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Proposition 2. Let u1, u2 be Young measure-valued entropy solutions to (1.1) with initial
data u1,0, u2,0 ∈ L2(Rd), respectively. Then, for any nonnegative function ϕ inD(Q), it holds

0 ≤

∫
Rd
|u1,0 − u2,0|ϕ(0)dx + E

∫
Q×]0,1[2

∣∣∣∣u1(t, x, α) − u2(t, x, β)
∣∣∣∣∂tϕdxdtdαdβ

−E
∫

Q×]0,1[2
F
(
u1(t, x, α),u2(t, x, β)

)
.∇ϕdxdtdαdβ.

(4.1)

Proof. We propose here to present stages of the proof introduced in [2], emphasizing on
differences with the deterministic setting, and stochastic calculus tools chosen. The main
idea is to use Kruzhkov’s doubling variables method. Let us apply the usual technique and
advice when we meet difficulties. For this, we consider two measure-valued solutions u1, u2
and those inequalities P-a.s.:

0 6
∫ 1

0
µu1(t,x,α),ηδ,k2 (ψ)dα ; 0 6

∫ 1

0
µu2(s,y,β),ηδ,k1 (ψ)dβ, (4.2)

where k1, k2 ∈ R and ψ ∈ D+([0,T ] × Rd).
Notice that, comparing with the deterministic case, the stochastic perturbation of our conser-
vation law brings new terms in the entropy inequalities, ones containing an Itô integral:∫ 1

0

∫
Q
η′δ(u1(t, x, α) − k2)h(u1)ψdxdw(t)dα∫ 1

0

∫
Q
η′δ(u2(s, y, β) − k1)h(u2)ψdydw(s)dβ,

(4.3)

and others containing the second derivative of ηδ:

1
2

∫ 1

0

∫
Q

h2(u1(t, x, α))η′′δ (u1 − k2)ψdtdxdα

1
2

∫ 1

0

∫
Q

h2(u2(s, y, β))η′′δ (u2 − k1)ψdsdydβ.
(4.4)

Usually, we take in (4.2) k1 = u1(t, x, α), k2 = u2(s, y, β), ψ(t, x, s, y) = ϕ(s, y)ρm(x−y)ρn(t−s)
with ϕ ∈ D+([0,T ] × Rd), suppϕ(t, .) ⊂ K a compact set of Rd, ρn and ρm the usual mollifier
sequences in R and Rd respectively, with suppρn ⊂ [− 2

n , 0]. Then, we integrate with respect
to (s, y, β) for the first inequality, with respect to (t, x, α) for the second one, we add those two
new inequalities and pass to the limit on δ, n and m.
In our case, there is a problem with this technique when we treat the stochastic integrals
(4.3). Indeed, because of the definition of the Itô integral, we require an Ft-measurability
for replacing k2 and an Fs-measurability for replacing k1, which are not satisfied by k1 =

u1(t, x, α) and k2 = u2(s, y, β) because we ignore if s > t or s < t (recall that Fs ⊂ Ft for
0 6 s 6 t).
For this reason, we consider the entropy formulations (4.2) with the same real k, and multiply
by a kernel of convolution ρl(u1(t, x, α) − k) the inequality coming from µu2,ηδ,k and integrate
with respect to (t, x, α); multiply by ρl(u2(s, y, β) − k) the inequality coming from µu1,ηδ,k and
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integrate with respect to (s, y, β), we add those two inequalities, then integrate over k in R all
the formulation and take the expectation, we get:

0 6 E
∫

Q

∫
]0,1[2

∫
R

µu1,ηδ,k(ϕ(s, y)ρm(x − y)ρn(t − s))ρl(u2(s, y, β) − k)dkdαdβdsdy

+E
∫

Q

∫
]0,1[2

∫
R

µu2,ηδ,k(ϕ(s, y)ρm(x − y)ρn(t − s))ρl(u1(t, x, α) − k)dkdβdαdtdx.

With a judicious order for the passage to the limit, we are able to avoid our measurability
problem in the stochastic integral. Indeed, we first pass to the limit on n, then we get the
same time everywhere (t or s), and the problem of measurability with respect to the σ-field
PT is forgotten. Then passing to the limit on l, we get back that u1(t, x, α) and u2(s, y, β)
replace k in our formulation, as we wished at the beginning.
Now it remains to pass to the limit on δ and m in the entropy inequality. The second delicate
point appears with terms containing the second derivative of ηδ (4.4) when we want to pass
to the limit on δ. Indeed, because of the presence of η′′δ , we are not able to identify the limit
of those terms, all we can say is that the limit exists (Tanaka formula), and the problem is
that we need to know the limit to obtain the local Kato inequality. For this reason, we decide
to consider a viscous regular solution uε instead of u2 and keep a measure-valued solution
u1 := û. Indeed, the suitable regularity of such a solution allows us to apply the Itô formula.
Following the concept of J. Feng and D. Nualart for treating the stochastic term, the idea
remains on combining terms containing η′′δ with others coming from stochastic calculus. Let
us mention that the passage to the limit on n and l on terms containing η′′δ gives:

1
2

E
∫
Rd

∫
Q

∫ 1

0
h2(û)η′′δ (û(s, x, α) − uε(s, y))ρm(x − y)ϕdαdsdxdy

+
1
2

E
∫
Rd

∫
Q

∫ 1

0
h2(uε)η′′δ (uε(s, y) − û(s, x, α))ρm(x − y)ϕdαdsdxdy

:= A + B.

The technical point is to combine appropriately those annoying terms with stochastic integrals
coming from (4.3) using the following judicious remark: the martingale property of the Itô
integral allows us to write the stochastic integrals in this way:

E
∫

Q

∫
R

∫ s

s−2/n

∫
Rd

∫ 1

0
η′δ(û − k)h(û)dαϕρm(x − y)ρn(t − s)dxdw(t)

×ρl(uε(s, y) − k)dkdyds

= E
∫

Q

∫
R

∫
Rd

∫ s

s−2/n

∫ 1

0
η′δ(û − k)h(û)dαρn(t − s)dw(t)ϕρm(x − y)dx

×[ρl(uε(s, y) − k) − ρl(uε(s − 2/n, y) − k)]dkdyds
:= Cn,l.

Here the choice of uε instead of u2 is crucial. Indeed, the regularity of uε allows us to apply
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Itô’s formula with duε = [ε∆uε + divf(uε)]dt + h(uε)dw = Aεdt + h(uε)dw and to get:

ρl(uε(s, y) − k) − ρl(uε(s − 2/n, y) − k)

=

∫ s

s− 2
n

ρ′l(uε(σ, y) − k)Aε(σ, y)dσ +

∫ s

s− 2
n

ρ′l(uε(σ, y) − k)h(uε(σ, y))dw(σ)

+
1
2

∫ s

s− 2
n

ρ′′l (uε(σ, y) − k)h2(uε(σ, y))dσ,

which wasn’t possible with a measure-valued solution.
Thus, by integration by parts with respect to the variable k, it comes:

Cn,l = −E
∫

Q

∫
R

∫
Rd

∫ s

s−2/n

∫ 1

0
η′′δ (û − k)h(û)dαρn(t − s)dw(t)ϕρm(x − y)dx

×
[∫ s

s− 2
n

ρl(uε(σ, y) − k)Aε(σ, y)dσ+

∫ s

s− 2
n

ρl(uε(σ, y) − k)h(uε(σ, y))dw(σ)

+
1
2

∫ s

s− 2
n

ρ′l(uε(σ, y) − k)h2(uε(σ, y))dσ
]
dkdyds

→n,l −E
∫
Rd

∫
Q

[ ∫ 1

0
η′′δ (û(s, x, α) − uε(s, y))h(û(s, x))h(uε(s, y))dα

]
ϕρm(x − y)dsdydx

:= C.

Thus,

A + B + C =
1
2

E
∫

Q

∫
Rd

∫ 1

0
[h(û) − h(uε)]2η′′δ (uε(s, y) − û(s, x, α))ρm(x − y)ϕdαdydxds

→δ 0.

In summary, this is the plan of the proof. By doing stochastic computations on the Itô integral
and passing to the limit (with classical techniques) with respect to n, l, δ, ε, m in this order on

0 6 E
∫

Q

∫ 1

0

∫
R

µû,ηδ,k(ϕ(s, y)ρm(x − y)ρn(t − s))ρl(uε(s, y) − k)dkdαdsdy

+E
∫

Q

∫ 1

0

∫
R

µεuε ,ηδ,k(ϕ(s, y)ρm(x − y)ρn(t − s))ρl(û(t, x, α) − k)dkdαdtdx,

we finally obtain the local Kato inequality. �

Proposition 3. The measure-valued solution is unique. Moreover, it is the unique entropy
solution.



Method for solving a stochastic conservation law 73

Proof. As in the deterministic case, set ω = ‖ f ′‖∞, û0 = u0, γ(t) =
(T−t)+

T , and denote by
ψ any nonincreasing regular function with 1]−∞,K] ≤ ψ ≤ 1]−∞,K+1], where K > 0. Then,
considering K = R + ωT for any R > 0 and ϕ(t, x) = ψ(|x| + ωt)γ(t) in (4.1) implies that,
u(t, x, β) = û(t, x, α) for almost any x ∈ B(0,R), t ∈]0,T [, ω ∈ Ω, α, β ∈]0, 1[. Thus, on the
one hand u = û; on the other hand u(t, x, α) = u(t, x) is independent of α, hence an entropy
solution in the sense of Definition 1.

�

Proposition 4. Entropy solutions satisfy a "contraction principle": if u1, u2 are entropy
solutions of (1.1) corresponding to initial data u1,0, u2,0 ∈ L2(Rd), respectively, then, for any
positive K and time t, E

∫
B(0,K−ωt) |u1 − u2|dx ≤

∫
B(0,K) |u1,0 − u2,0|dx.

Proof. This is a consequence of the previous proof when passing to the limit when ψ con-
verges to 1]−∞,K]. �
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