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OSEEN PROBLEM IN R3: AN APPROACH
IN WEIGHTED SOBOLEV SPACES

Chérif Amrouche, Mohamed Meslameni and Sarka Nedasova

Abstract. In this paper, we study the Oseen problem in R3. We are interested in the
existence and uniqueness of generalized solutions and we give some regularity results.
Our approach rests on the use of weighted Sobolev spaces.
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§1. Introduction

We consider the Oseen problem in R*: For a given vector field f and a scalar function &, we
look for a velocity field u and a pressure 7 which fulfil:

—Au+divv@u)+Vr=f and divu=h in R’ (D

where, v is a given velocity field belonging to L*(R?) with divergence free. The existence and
uniqueness of problem (1) are well known in the classical Sobolev spaces W"”(Q) when the
domain Q is bounded i.e with a boundary condition. It is well known that it is not possible
to extend this result to the case of unbounded domains in which we are interested, here the
spaces W™P(Q) is not adequate. Therefore, a specific functional framework is necessary
which also has to take into account the behaviour of the functions at infinity.

§2. Basic concepts on weighted Sobolev spaces

Let x = (x1, X, x3) be a typical pointin R* and let r = |x| = (x? +x3 +x3)"/? denote its distance
to the origin. In order to control the behaviour at infinity of our functions and distributions
we use for basic weight the quantity p(x) = (1 + r?)!/? which is equivalent to r at infinity,
and to one on any bounded subset of R®. We define D(R?) to be the linear space of infinite
differentiable functions with compact support on R3. Now, let £ (R?) denote the dual space
of D(R?), often called the space of distributions on R3. We denote by < .,. > the duality
pairing between D’(R*) and D(R?). For each p € R and 1 < p < oo, the conjugate exponent
p’ is given by the relation % + [% = 1. Then, for any non-negative integers m and real numbers
p > 1 and a, setting
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k=k(m, p,a) = {
m
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we define the following space:

W P (R) = {u € D'(R);
YAeN?: 0<|A <k p®™W(In(1 + p))~' D' € LP(R?);
VAeN?: k+1< A <mp*™ MDY e LP(RY)).

It is a reflexive Banach space equipped with its natural norm:

—m+|A] N
lllyrrey =| " o™ Hin(1 + o)~ DYull?,
0<|a|<k
1/p

—m+|A| pA
£y D g

k+1<|A<m
For m = 0, we set
WoP(R) = {u € D'(RY); p%u € LP(RY)).

We note that the logarithmic weight only appears if p = 3 or p = % and all the local
properties of W, ”(R?) coincide with those of the classical Sobolev space W™P(R?). We
set W,""(R?) as the adherence of D(R?) for the norm || . |lymrgs). Then, the dual space of

Wy (R?), denoting by W_"" / (R3), is a space of distributions. On the other hand, these spaces
obey the following imbedding

Wil (R3) e WP (RY)

if and only if m > Q0 and 3/p+a # 1l orm < 0and 3/p + a # 3 . In addition, we have for
a=0ora=1

. 3
WP R < WOP*(RY)  where px = 3—” and 1<p<3. )

Consequently, by duality, we have

o 3
WIR3) s WM (R3)  where g = 3 f and p’ > 3/2.

Moreover, the Hardy inequality holds,

”u”W(I,'p(H@) < C”V MHW?,'P(R3)’ lf 3/p ta> 1,

<
< CIIV ullyo

Yu € WAP(R), { otherwise

lellyao ey, ®)
where Py stands for the space of constant functions in W(ly’p (R3) when 3/p +a < 1 and C
satisfies C = C(p,a) > 0.
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§3. Generalized solutions in W(l)’p (R3).

We are interested in the existence and the uniqueness of generalized solutions (u, 7) € W(l)’p (R3)x
LP(R?), with 1 < p < oo, to the Problem (1). We will consider the following data:

FeW,"P®Y), veIL3®®) and heLP(RY).

On the one hand if u € W(l)’p (R3), then we have u € Lf O/S(R3) and thus v ® u belongs to
Llloc(R3). It means that div(v ® ) is well defined as a distribution in R3. On the other hand, if
p = 3/2, we deduce that the term v - V u is well defined and we can write divvQu) =v-Vu.
Moreover, if (u,7) € W(l)’p (R3) x LP(R?) with p < 3 is a solution to (1), we have for any
@ € DR):

f (Vu+vou) : Vo —ndivp) = {f, ‘P>W“~”(R3)><W""'(R3)' 3)
R3 0 0

Observe that in this case, u € L?*(R?) with # = ]1—7 - % sov®u € LP(R?). Because D(R?) is
dense in W(l)’p / (R3), this last relation holds for any ¢ € W(l)’p ’ (R3). As this last space contains
the constant vectors when p’ > 3, the force f must satisfies the following compatibility
condition:

{fi 1>W(;1’P(R3)XW(;"’/(R3) =0 foranyi=1,2,3 if p<3/2. ()

If p > 3, (1) is equivalent to the following variational problem:

jr;z (Vu : Vo —ndivg+v-Vu-p)={f, go)Wal,,,(R})XWS_pr(m. 5)

Remark 1. To simplify the study of problem (1), we can suppose at first that 4 = 0. Indeed,
if 4 in LP(R?), there exists y € Wg’p (R3) such that A y = & (see [1]) and satisfying

19 Xyt ey < Clllr e
Setw, =Vye WOI”)(R3) and z = u — wy,. Then problem (1) becomes:
-Az+divve®z)+Va=f+Aw, —divv®w,) and divz=0 in R3.

If 1 < p < 3, we have w;, € LP*(R?) and v ® w;, belongs to L”(R?). Consequently div(yv ® w},)
belongs to WO_I’I’(R3). However when p > 3, div(v ® w;) = v - V wj, belongs to L"(R?), with
I=1+ % and L"(R3) — Wal’p(R3). This means that F := f + Awj, — div(v ® w,) belongs to

r

W, L (R%). In addition, we have for any i = 1,2,3 and p < % the equivalence
<ﬁ, 1>W5]"’(R3)XW$"’,(R3) =00 <F,’, 1>W0_LP(R3)><W(§"’/(R3) =0. (6)
This means that to solve (1), it is sufficient to solve the following problem:
—Au+divv@u)+Va=f and divu=0 in R’ (7

In the following theorem, we establishes the existence of generalized solutions to Problem
(1) in the case 1 < p < 2. The uniqueness of the solutions will be studied later.
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Theorem 1. Let 1 < p < 2. Assume thatf € W Lp (R3) satisfies the compatibility condition

@) and letv € L?T(R3). Then the Oseen problem (7) has a solution (u,n) € W(l)’p R} x LP(R3)
such that

ey e + Illooesy < CCL+ Il gy Wl sy @®)

Proof. First, the case p = 2 is an immediate consequence of the following property

Yw e WP (RY), ¥-V)w-w=0
R3

and Lax-Milgram aligna. So we can suppose that 1 < p < 2.

The main idea of the proof is to observe that v € L (R?) can be approximated by a smooth
function ¢ € D, (R?). Given &, there is ¥, € D,(R?) such that

v — ‘ﬁg”y(RB) <g, C))

where & > 0 is a constant which will be fixed as below. By (4) and [3], we have f = divF
with F € LP(R?). Let p € D(R?), be a smooth C* function with compact support in B(0, 1),
such that p > 0, fR3 p(x)dx = 1. For t € (0, 1), let p; denote the function x +— (t%)p(’—t‘). Let
@ € D(R?) such that 0 < ¢(x) < 1 for any x € R?, and

o[ osiris,
x) =
¢ 0 if |x|>2.

We begin by applying the cut off functions ¢, defined on R? for any k € N*, as ¢ (x) = (7).
Set F; = ¢F. Thus we obtain

Gu=p+Fe DR and limlim G, =F in LP(R%). (10)

t—0 k—o0

Now, observe that using Young inequality, we have

llo; * Fk”LZ(]RS) < ||pt||L‘/(]R3)||Fk”L"(]R3), (11

2
with g = 3_p2 Observe that g > 1 is equivalent to p < 2. After an easy calculation, we

obtain that 4
llor * Fellp2 sy < 57”'7||Fk”Ll’(R3)- (12)
We choose t = k™ with @ > 0 which will be precise later. Set now f, = div G, for any

k € N*, Then we have
fi—=f in WP®R?).

It is clear that f, satisfies the condition (4).

Step 1. We suppose that v € D, (R3). Thanks to Lemma 4.1 see [2], there exists a
unique solution
up € WPRHNWIRY), e PR N LP(R®)
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satisfying
—Au +divo@uy) + Vm =f,, divap =0 in R’ (13)

Set B, = supp ¥, then from the Stokes theory (see [1] Theorem 3.3), we obtain
elgpoces, + Imllcesy < Co (fallysoges, + I @ il ). (14)
where C; doesn’t depend on k, f; and v. Using Holder inequality, we have

v =¥ @uillr®sy + W, @ urllr@s
v — ‘/’g||L3(R3)||uk||L/’*(R3) + ||¢g||L3(B€)“uk”Lp*(Ba)‘ (15)

v ® uillpr@s) < |
|

<
<
Using the Sobolev inequality, we obtain

gl ey < Collaallyr e, (16)

By the assumption (9), and from (14), (15) and (16) it follows that

(1= C1 ool e, + Imelies) < Crlflhytogesy + Wllpsaa, Il (A7)
Taking 0 < € < 1/2C,C,, we obtain

||uk||W(1)~l’(R3) + ||7rk||LP(R3) < 2C1(”fk||w(;1vﬁ(R3) + ||¢8“L3(Bg)”uk”Ll’*(Bg))'
(18)

From (18), we prove that there exists C > 0 not depending of k and v such that for any k € N*
we have

Nl s,y < Cllf ellyy-tr es)- 19)

Indeed, assuming, per absurdum, the invalidity of (19). Then for any m € N* there exists
ln €N f, € Wi PR N W2 (RY) and v,, € D, (R?) such that, if (ug,, 7,) € (W (RY) N

m

W(l)’z(R3)) x (LP(R?) N L*(R?)) denotes the corresponding solution to the following problem :

-Aug, +divv, ®ue,) + Vo, =f,, divag, =0 in R, (20)
the inequality
e, llereeo > mllfg, 10 g3 21
would hold. Note that f, = div(o, = F¢,) with F, = ¢, F. Set
U, e, f n x
Wy = and R,, = —————. Then for any m € N* we have

9,,, = =
e, |l s,) llzes, Nl s, llzeg, |l s,

—Aw,, +div(y,, ®w,)+ V6, =R, and divw,=0 in R (22)

Now, using (22) and the fact that div(v,, ® w,,,) = v,, - Vw,,, we obtain for any m € N* and

t>0 :
f IV w,|* dx = ——f o *F; :Vw,dx.
R3 llees, |l (B,) Jr3
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Using (21) and Cauchy Schwartz inequality, we have

IV willp2gsy < llo: * Ko, llp23)- (23)

m|lffm”W51'p(R3)

1 ,
Using (12) and choosing t = — with 0 < a < %, we deduce that
ma

ar

IV Willg2gsy < e, llLres)- (24)

1-3
mllf e, Nyt gy

Because the semi-norm ||V - ||;2(z3) is equivalent to the full norm || - lly12 (3 and the right hand
0
side of the last inequality tends to zero when m goes to oo, we deduce that

wn — 0in WAR). (25)

Then, w,, — 0 in  L°(R?) and in particular in L”*(B,). On the other hand, we have
[Wllzr s,y = 1, leading to a contradiction. Inequality (19) is therefore established. From (18)
, (19) and (9) we obtain for any k € N*

lekllyyr sy + kllrs) < 2C1(1+ CIlps@aplfilly o) (26)
Thus we can extract a subsequences of u; and my, still denoted by u; and 7, such that
u,—u in Wé’p(R3) and m — 7 in LP(R?),
where (u,7) € W(l)’p (R3) x LP(R?) verifies (7) and the following estimate
lleellytr sy + llr sy < 2C1 (1 + CIWIE s Iy gs)- (27
Step 2. We suppose that v belongs only to L (R?). Let v; € D, (R?) such that
v, —v in L*R). (28)
Using the first step, there exists (u,,7,) € W(l)"’ (R3) x LP(R?) satisfying
—Au, +divv,®u) +Vry=f and divu, =0 in R (29)
and satisfying the estimate
lleallyyees)y + I7allr@s) < 2C1 (1 + ClWallps @) lly- 1 gs)- (30)

We can finally extract a subsequence which converges to (u, ) € W(l)’p (R?) x LP(R?) which
is a solution of the Oseen problem (7) and verifying the estimate (8) when 1 < p < 2. For
p = 2, estimate (8) was proved in Theorem 3.4 of [2]. |

We will prove now some regularity results, when the external forces belong to the inter-
section of negative weighted Sobolev spaces. The proof of the first result is similar to that of
Theorem 1.
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Theorem 2. Let 1 < p < 2. Let f belonging to Wo_l’p(R3) N WO_I’Z(R3) satisfying the compat-
ibility condition (4) and let v € Lg(R3). Then the Oseen problem (7) has a unique solution
(u,n) e (W(l)’p(R3) N W(l)’z(R3)) x (LP(R?) N L*(R?)) such that

”u”W[')vF(R.%)+||u||W:)v2(R3)+||7T||Ll’(]R3)+||7T||L2(]R3) < C(l +||v||L3(R3))(”ﬂ|Wo-‘-2(R3) +“f”W0‘1~F(RB))~ (3D

In Theorem 1, we have studied the existence of weak solution of the Oseen problem when
1 < p < 2. Now the question that will be discussed: if, the solution given by is Theorem
1 unique? If it is unique, is it for all 1 < p < 27 The first answer is given in the following
proposition:
Proposition 3. Let 6/5 < p <2. Letfe W, Lp (R3) satisfying the compatibility condition (4)
andv € Lg(R3). Then the solution (u, ) € W(l)"" (R3) x LP(R3) given by Theorem 1 is unique.

Proof. Suppose that there exist two solutions (¢, 7;) and (u,, ;) belong to W(l)‘p R3HXLP(RY)
and verifying Problem (7). Setu = u| — u; and © = m; — 1, then we have

—Au+divo®u)+Vr=0 and divu=0 in R>. (32)

Our aim is to prove that (u, ) = (0,0). Observe that for any £ > 0, v can be decomposed as:
Vv = v + v, with

vi € LLRY), [willpgsy <& and vy € DL(RY). (33)

The parameter € will be fixed at the end of the proof.

Note that v, € L'(R»)NL®(R3). Now, since u € W(l)’P (R3) — LP*(R?) we prove that v,®u
belongs to LP*(R3) N L'(R?). As 6/5 < p < 2,then2 < p * 6 and thus div(v, ®u) = v, - Vu
belongs to WO_ L.p (R3)0W0_ 1'2(11%3) and satisfies the compatibilty condition (4). Then it follows

from Theorem 2 that there exists a unique z € W(])’p RN W(l)’2 (R¥) and 6 € LP(R?) N L*(R?)
such that
~Az+div(r; ®2)+V0=—-v,-Vu and divz=0 in R>. (34)

Because of (32) and (34), the functions w = z — u and g = 6 — & satisfy:
—Aw +divy,®w)+Vg=0 and divw=0 in R’ (35)
From the Stokes theory see ([1]) and Sobolev imbeddings, we obtain

Wyt eoy < CIt @ wiliresy < CWlgsesy Wllceo
< CC*”VI||L3(R3)||W||W(l)»p(R3)

< CC"elWllyrges-

Taking 0 < &€ < 1/(CC*), we conclude that w = 0 and so ¢ = 0. Thus (u, ) belongs to
W(')’Z(R3) x L*(R?) and we can write that div(v ® u) = v - Vu. Using (32), we deduce that

(CAu+v-Vu+ Vru)y-amapwees =0,
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and so
IV ullp2@s) + jﬂ; v-Vu-udx=0.

1
Since fR3 v-Vu-udx = 3 fR3 v - V|u?|dx = 0, we prove that ||V ullp2gs = 0 and thus u = 0
and so 7 = 0. Finally, we have proved that (u, ) = (0, 0) for any 6/5 < p < 2. O

The second regularity result is announced in the following theorem.

Theorem 4. Let 1 < p < r < 2. Suppose that f belongs to W, Lp ®>HN w, Lr(r3) satisfying
the compatibility condition (4) with respect to p and r and let v € L3(R3). Then the Oseen
problem (7) has a solution (u,n) € (W(l)”7 RN W(l)”(R3)) x (LP(R?) N L"(R3)) such that

leelly 1 g5y + etllygr gy + el sy + tllr sy < CCLH Wl @) )ALy sy + Al 1 gsy)- (36)

Proof. Let f belongs to W, Lp ®HN w, 1”(R3 ) and satisfying the compatibility condition (4)
with respect to p and with r. Then f can be written as f = divF with F € LP(R*) n L"(R?).
Take the same sequence f, as in the proof of Theorem 1, which now converges to f in
W, PR N W (R,

Step 1. We suppose that v € D(R?). Proceeding as in the first step of Theorem 1, there
exists a unique solution

up € WP RN WLRY), € LP(RY) N LA(R®)

such that
A +divo®@u) +Vm =f, divag=0 in R} (37)

and satisfying the estimate
ekl gy + Il ey < Cp1+ Il Ml 1o (38)

where C, doesn’t depend on k. On the other hand, using an interpolation argument, we have
also uy € W(l)’r(R3), because p < r < 2. Now proceeding as in Theorem 1, we prove that

”uk”W(]]"A(Rﬂ + ||7Tk||L’(]R3) <C(1+ ||v||L3(R3))”fk”WU"”(R3)’ (39)
where C, doesn’t depend on k.
Finally, (u;,n;) is bounded in (W(l)’p R N W(IJ‘V(R3)) x (LP(R?) N L'(R?)) and we can
extract a subsequence denoted again by (uy, ;) and satisfying
we—u in WRHNW®R) and m —n in LPR)NLRY.  (40)

We then verify that (u, ) is a solution of (7) and we have the estimate (36).

Step 2. We suppose that v belongs only to L’ (R3). The proof is exactly the same as in
Theorem 2 where we take the exponent r instead of the exponent 2. O
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Now, we study the uniqueness of generalized solution when 1 < p < 6/5:
Proposition 5. Let 1 < p <6/5. Letfe W, LP(R3) satisfying the compatibility condition (4)
andv € Lg(R3). Then the solution (u,n) € W(l)‘p (R3) x LP(RY) given by Theorem 1 is unique.

Proof. We proceed as in Proposition 3. Let (u, ) belongs to W(l)”’ (R3)x LP(R?) and satisfying

(32). We know that v, ®u belongs to LP*(R*)NLP(R?), with 3/2 < px < 2 and thus div(v,®u)
belongs to W/ LrsR3HN W, LP(R3). Moreover div(v,®u) satisfies the compatibility condition

(4). Using Theorem 4, we deduce that there exists (£, ¢) € (W(l)’p "RHN W(I)’p R))X(LP*RHN
LP(R3)) such that

~AE+divr ®E) + Vo = —divima®u) and divé=0 in R 1)
Setd=¢ —uand y = ¢ —m, we have
~AA+divp, @) +Vy =0 and divd=0 in R>
As in Proposition 3, we prove that (4,) = (0,0). Then we deduce that (u, ) belongs to
W(l)"’ "(R?) x LP*(R?). Using again Proposition 3, we prove that (u, 7) = (0,0). o
We can now summarize our existence, uniqueness and regularity results as below.
Theorem 6. Assume that v € L3 (R3).

i)Let1 < p <2 heLP(R® and f € Wo_l’p(R3) satisfying the compatibility condition (4).
Then the Oseen problem (1) has a unique solution (u,m) € W:)”’(R3) x LP(R?) such that

s, + Ilcesy < CCL+ W) (Wi o, + (1 + Wl Wil ). @2)

ii) Let 1 < p < r < 2. Suppose that f belongs to Wo_l”’(R3) N W, (R?) and satisfying the
compatibility condition (4) with respect to p and r. Then the Oseen problem (7) has a unique
solution (u, ) € (W(l)’p ®RHN W(l)’r(R3)) x (LP(R®) N L' (R?)) such that

leel 1 g3y + Netllygr gy + el sy + el sy < QL Wl @) )ALy sy + Al 1 gay)- (43)

Finally the following existence result can be stated via a dual argument.

Theorem 7. For p > 2, let f € W Lp R3, h e LPR> and v € L?,(R3). Then, the Oseen
problem (1) has a unique solution (u,n) € W(l)’p(R3) X LPRY) if p < 3andifp > 3, uis
unique up to an additive constant vector. In addition, we have

||u||w(1)-F(R3)/p[173/p] + ||7T||LP(]R3) < C(l + ||v||L3(R3))2 (”ﬂ|Wt;l‘p(]R3) + ”h”LF(R3)) . (44)

Proof. On one hand, Green formula yields, for all w € W;” (R and (u,1) € W7(R?) x
LP(®R)

(-Au+v-Vu+Vn, w>W(;l,li(R3)XW(1)vl"(R3) =

{u,—Aw —div(r ® w))W:),,,(R3)XW(]_1,,,/ ®) " (7, div W) paysrr ®3) -
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Taking into account that if p > 2, we have w € W(l)’p /(R}) s [3P/@r=3(R3) and since
v € L3(R®) we can conclude that v ® w € L' (R?) and consequently div(y ® w) € W, L (R3),
On the other hand, for all € L” (R3),

<u, \Y )7>W(I)'/J(R3)XW[;I'I), ®3) = - <d1V u, T])LIJ(RS)XL,;’ (R3)

Then problem (1) has the following equivalent variational formulation:
Find (u,7) € W(])’p (R) x LP(R?) such that for all (w,7) € W(])’p R3) x L” (RY),

(u,—Aw —divvew) +V 77>W[]J,11(R3)XW0—1_,,/ ®) (7, divw) ey @3y =
<f, w>wo—l,p(R3)XW(]J,p’ (R;) - (h, U>L/’(R3)XU” (R3) . (45)
According to Theorem 6, for each (f',1') € W, LP(R3) x P (R?) satisfying

. 3
<fi/’ 1>W0"""(R3)><W(}~"(R3) =0 if p’'< bX

there exists a unique solution (w,n) € W(])’p / (R?) x L (R?) such that
—Aw—divh@w)+Vn=f, divw=h in R’
with the estimate
g1 g+ 7l 2y < CCL+ Il YUyt sy + (1 + Il I s es):
Observe that the mapping
T: (f,0)—{f, w>WJI‘”(R3)><Wt1)"’/(R3) = @y @) -

is linear and continuous with

|T(f/9h’)| < ”f”WO’IvW(R3)||w||W(1)vF'(R3) + “h”LI’(R3)”n”LI’/(R3)
2
< €O+ Wl (Wb sy + oo (I Uy oy + W o o).

Note that f’ belongs to W, Lp /(R3) and f/LR3 if p > 3. Thus there exists of unique
(u,m) € Wy"(R%) x LP(R) if 2 < p < 3, and a unique (u, 7) € (W, (R3)/Pp13/,) X LP(RY))
if p > 3, such that

TR = G Dypirgayew; o oy = 0 W Do @)
with
2
ooy o, * Wy < CCLE blleey? (Wl e, + Wiloes )
By definition of 7, it follows that
<f’ w>W(;l'p(R3)><W(l)'p'(R3) - <h? n)LI’(R3)XLI" (]R3) = <u’f,>W(l)'p(R3)><W(;]‘pl(R3) - <7T, h’)Lh(R3)XL”’ (R3) »

which is the variational formulation (45). m|
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