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LEGENDRE TRANSFORM OF SAMPLED
SIGNALS BY FRACTAL METHODS

María Antonia Navascués and María Victoria Sebastián
Abstract. The fractal interpolation functions provide an alternative to the classical meth-
ods of study of experimental variables. They have been proved useful in many applica-
tions, from image compression to signal processing.

The spectral methods (in terms of trigonometric polynomials) are suitable to model
periodic or near periodic phenomena. However some experimental variables are far from
periodicity. In this paper we present a method to compute Legendre Transform and series
expansions for sampled signals by means of fractal methods.

The periodic Fourier case is generalized considering polynomial orthogonal series.
Pointwise, uniform and mean-square convergences of the sums are studied and weak
sufficient conditions for these types of approximation are found. The procedures ensure a
good approach whenever the sampling frequency and the order of the sums are properly
chosen.
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§1. Introduction

We present a method of computing a Legendre expansion for a sampled signal, with the
single hypothesis of continuity. The calculus is made via an affine fractal interpolation of the
experimental variable. For a suitable election of the scale vector, the pointwise, uniform and
mean-square convergences of the expansion obtained are proved. The Legendre Transform
provides a formula for the power of the signal, where the hypothesis of periodicity is not
needed.

§2. Affine fractal interpolation functions

Let t0 < t1 < · · · < tN be real numbers, and I = [t0, tN] the closed interval that contains them.
Let a set of data points {(tn, xn) ∈ I × R : n = 0, 1, 2, . . . ,N} be given. Set In = [tn−1, tn] and
let Ln : I → In, n ∈ {1, 2, . . . ,N} be contractive homeomorphisms such that:

Ln(t0) = tn−1, Ln(tN) = tn (1)

|Ln(c1) − Ln(c2)| ≤ l |c1 − c2| ∀ c1, c2 ∈ I (2)

for some 0 ≤ l < 1.
Let −1 < αn < 1, for n = 1, 2, ...,N, F = I × R and N continuous mappings Fn : F → R

be given satisfying:
Fn(t0, x0) = xn−1, Fn(tN , xN) = xn, (3)
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where n = 1, 2, ...,N and
|Fn(t, x) − Fn(t, y)| ≤ |αn| |x − y| (4)

with t ∈ I, x, y ∈ R.
Now define functions

wn(t, x) = (Ln(t), Fn(t, x))

for n = 1, 2, . . . ,N.

Theorem 1 (Cf. [1]). The iterated function system (IFS) {F, wn : n = 1, 2, ...,N} defined
above admits a unique attractor G. G is the graph of a continuous function f : I → R which
obeys f (tn) = xn for n = 0, 1, 2, . . . ,N.

The previous function is called a fractal interpolation function (FIF) corresponding to{
(Ln(t), Fn(t, x))

}N
n=1 and it is unique satisfying the functional equation [1]:

f (t) = Fn(L−1
n (t), f ◦ L−1

n (t)) (5)

for n = 1, 2, ...,N, t ∈ In = [tn−1, tn].

The most widely studied fractal interpolation functions so far are defined by the IFSLn(t) = ant + bn,

Fn(t, x) = αnx + qn(t),
(6)

where
an =

tn − tn−1

tN − t0
and bn =

tN tn−1 − t0tn
tN − t0

; (7)

αn is called a vertical scaling factor of the transformation wn and ᾱ is the scale vector of the
IFS, ᾱ = (α1, α2, . . . , αN). In this case, the equation (5) becomes

f (t) = αn f ◦ L−1
n (t) + qn ◦ L−1

n (t) (8)

for n = 1, 2, . . . ,N, t ∈ In = [tn−1, tn].
If qn(t) is a line, the FIF is termed affine (AFIF). In this case, by Eq. (3), qn(t) = qn1t+qn0,

where
qn1 =

xn − xn−1

tN − t0
− αn

xN − x0

tN − t0
, (9)

qn0 =
tN xn−1 − t0xn

tN − t0
− αn

tN x0 − t0xN

tN − t0
. (10)

These approximants are discussed in the references [4], [5], [6] and [7]. In [4] and [7], several
ways of obtaining the scaling factors from the data are presented.

2.1. Rate of approximation
We consider the following notation, for a continuous function g defined on a compact inter-
val I,

‖g‖∞ = max{|g(t)| : t ∈ I}
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Figure 1: Graph of an affine fractal interpolation function for the set of data points
{(−1, 8), (−3/5, 7), (−1/5, 7), (1/5, 4), (3/5, 3), (1, 7)} and scale factors αn = 0.3 for n =

1, 2, . . . , 5

The modulus of continuity of g is defined as

ωg(δ) = sup{|g(t) − g(t′)| ; |t − t′| ≤ δ, t, t′ ∈ I}

By g ∈ Lip β (g is Hölder-continuous with exponent β) we mean that there exists M ≥ 0 such
that, for all t, t′ ∈ I,

|g(t) − g(t′)| ≤ M|t − t′|β.

Lemma 2. g ∈ Lip β if and only if ωg(δ) ≤ Kδ β.

Proof. See [3]. �

Proposition 3. If x is a continuous function providing the data {(tn, xn)}Nn=0 with a constant
step h = tn − tn−1, and f is the corresponding AFIF with scale vector ᾱ,

‖x − f ‖∞ ≤ wx(h) +
2|ᾱ|∞

1 − |ᾱ|∞
‖x‖∞, (11)

where wx(h) is the modulus of continuity of x(t).

Proof. Let g0 be the polygonal with vertices {(tn, xn)}Nn=0. One has

‖x − f ‖∞ ≤ ‖x − g0‖∞ + ‖g0 − f ‖∞.

The first term is bounded in Lemma 3.9 of [7] and the second in Proposition 5.1 of [6]. Thus

‖x − g0‖∞ ≤ wx(h), (12)
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‖g0 − f ‖∞ ≤
2|ᾱ|∞

1 − |ᾱ|∞
Xmax,

where Xmax = max0≤n≤N{|xn|} and the result is deduced. �

§3. Legendre Transform

In the article [1], a recurrence formula for the computation of the moments Mm,

Mm =

∫
I
tm f (t) dt (13)

was given, for a function f defined by the general iterated function system (6). The formula
is expressed as

Mm =
1

(1 −
∑N

n=1 am+1
n αn)

m−1∑
k=0

(
m
k

)
Mk

N∑
n=1

ak+1
n αnbm−k

n + Qm

 (14)

where

Qm =

∫
I
tmQ(t) dt (15)

and
Q(t) = qn ◦ L−1

n (t) if t ∈ In (16)

Without loss of generality, we consider here the interval I = [−1, 1]. Let {pn}
∞
n=0 be

the system of normalized polynomials of Legendre. These functions are orthonormal with
respect to the inner product

( f , g) =

∫
I

f (t)g(t) dt. (17)

To compute the Fourier-Legendre coefficients of a FIF f with respect to this complete system,
we can proceed in the following way; if the n-th Legendre polynomial pn is

pn(t) =

n∑
m=0

dmtm,

the coefficients of f are

cn = ( f , pn) =

∫
I

f (t)pn(t) dt =

n∑
m=0

dm

∫
I
tm f (t) dt =

n∑
m=0

dmMm, (18)

where Mm are the moments defined in (13). The expansion of f in terms of Legendre poly-
nomials is

+∞∑
n=0

cn pn

and the sequence (cn) is the Legendre transform of f .
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§4. Power of the signal

The scalars cn enable the construction of the expansion

f ∼
∞∑

n=0

cn pn,

which is convergent in quadratic mean to f , that is to say, it is convergent with respect to the
L2-norm:

‖ f ‖2 =

(∫
I
| f (t)|2 dt

)1/2

To compute the convolution (in a wide sense) of two FIFs, we may use the Parseval’s identity:

( f , g) =

∫
I

f (t)g(t) dt =

∞∑
n=0

c f
n cgn, (19)

where c f
n and cgn are the Fourier coefficients of f and g respect to Legendre polynomials. The

power (or energy) of a signal is given by the Parseval’s equality as

P = ( f , f ) =

∫
I
| f (t)|2dt =

+∞∑
n=0

|cn|
2,

where cn are the coefficients of f .

Proposition 4. The error in the computation of the square root of the power is bounded by
the expression ∣∣∣P1/2

x − P1/2
f

∣∣∣ ≤ (
wx(h) +

2|ᾱ|∞
1 − |ᾱ|∞

‖x‖∞

) (
length(I)

)1/2
,

where Px is the power of the original continuous function x(t), P f is the power computed by
means of an AFIF f with scale vector α, and length(I) = (b − a) if I = [a, b].

Proof. The error in the square root of the power is given by∣∣∣P1/2
x − P1/2

f

∣∣∣ =
∣∣∣‖x‖2 − ‖ f ‖2∣∣∣ ≤ ‖x − f ‖2,

where ‖g‖2 =
(∫

I |g(t)|2 dt
)1/2. Moreover,

‖x − f ‖2 =

(∫
I
|x(t) − f (t)|2 dt

)1/2

≤ ‖x − f ‖∞
(
length(I)

)1/2
. (20)

Proposition 3 provides then the estimation of the statement. �
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§5. Convergence of the Legendre expansion

The next result proves the validity of using AFIFs to construct Legendre series expansions of
a real sampled signal, according to the procedure described in the Section 3.

Theorem 5. Let x ∈ C(I) be the original function providing the data. If we choose a fractal f
with scale vector ᾱh tending to zero as h→ 0, then the Legendre expansion defined by means
of f converges in quadratic mean to x as m→ ∞ and h→ 0.

Proof. Let S m f be the m-th partial sum of the Legendre series of f . Let us consider

‖x − S m f ‖2 ≤ ‖x − f ‖2 + ‖ f − S m f ‖2. (21)

By (20),
‖x − S m f ‖2 ≤ ‖x − f ‖∞(length(I))1/2 + ‖ f − S m f ‖2

and, by (11),

‖x − S m f ‖2 ≤ (length(I))1/2
(
wx(h) +

2|ᾱh|∞

1 − |ᾱh|∞
‖x‖∞

)
+ ‖ f − S m f ‖2.

The uniform continuity of x on I implies that limωx(h) = 0 as h tends to zero ([3]).
The second adding of (21) goes to zero as m tends to infinity due to the convergence in

quadratic mean of the Legendre series of f . �

Remark 1. The former theorem ensures the goodness of the procedure to obtain the power
whenever the step and the expansion order are suitably chosen.

In the following we study the pointwise and uniform convergence of the Legendre series.
We need two previous lemmas.

Lemma 6. Let f be a FIF defined by (6) with equally spaced tn and qn arbitrary satisfying
qn(t) ∈ Lip δn, 0 < δn ≤ 1. Let δ = min{δn : n = 1, 2, . . . ,N}. Then, if |ᾱ|∞ < hδ, f (t) ∈ Lip δ.

Proof. ([2]) �

Lemma 7. If f ∈ Cp[−1, 1] is such that f (p) ∈ Lip δ, then the m-th Legendre sum of f satisfies
the inequality

‖ f −
m∑

n=0

cn pn‖∞ ≤
K ln m

mp+δ−1/2 (22)

for p + δ ≥ 1/2.

Proof. ([9]) �

Theorem 8. The Legendre expansion of any affine fractal interpolation function f converges
pointwisely to f almost everywhere. If the scale vector of f is such that |ᾱ|∞ < h then the
Legendre expansion of f converges pointwise and uniformly to f on the interval I = [−1, 1].
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Proof. In the reference [8], the author proves that the Legendre series of any function f ∈
Lp(I) such that p > 4/3 converges pointwisely to f almost everywhere. This fact assures the
pointwise convergence for any AFIF a.e. (due to its continuity on I).

The mappings qn defined in the Section 2 are linear and, consequently, qn ∈ Lip 1. If
|ᾱ|∞ < h according to the Lemma 6, f (t) ∈ Lip 1. Now, we apply the Lemma 7 for p = 0 and
δ = 1 obtaining ∥∥∥∥∥ f −

m∑
n=0

cn pn

∥∥∥∥∥
∞

≤
K ln m
m1/2 . (23)

As m tends to infinity the Legendre sum tends to f and the uniform convergence is satisfied
on the interval I = [−1, 1]. �

Remark 2. This result is true for any step h.

Theorem 9. Let x(t) ∈ C(I) be the original function providing the data. If we choose |ᾱ|∞ < h,
then the Legendre expansion defined by means of an AFIF converges uniformly to x as m→ ∞
and h→ 0.

Proof. The uniform continuity of x(t) on I implies that limωx(h) = 0 as h tends to zero ([3]).
Let S m f be the m-th partial sum of the Legendre series of f . Let us consider

‖x − S m f ‖∞ ≤ ‖x − f ‖∞ + ‖ f − S m f ‖∞.

The first term goes to zero if h → 0 due to Proposition 3. The second term goes to zero as
well when m→ ∞ according to the previous theorem,

lim
m→∞

‖ f − S m f ‖∞ = 0

and the result is obtained. �

Remark 3. The former theorem ensures the goodness of the procedure to represent and eval-
uate the signal whenever the step and the expansion order are suitably chosen.
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