
Monografías Matemáticas García de Galdeano 37, 171–180 (2012)

UNIQUENESS OF STRONG SOLUTIONS
TO DOUBLY NONLINEAR
EVOLUTION EQUATIONS

Jochen Merker
Abstract. In this article uniqueness of strong solutions to the abstract doubly nonlinear
evolution equation

∂Bu
∂t

+ Au = f

is discussed under the main assumptions that B−1 is strongly monotone and there is a
C < ∞ such that ΦA + CΦB is convex for the potentials ΦA resp. ΦB of A resp. B.
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§1. Introduction

The aim of this article is to discuss strong solutions of abstract doubly nonlinear evolution
equations

∂Bu
∂t

+ Au = f , (1)

and especially the uniqueness of strong solutions to an initial value. Hereby, A : X → X∗

resp. B : Y → Y∗ are operators on Banach spaces X resp. Y with a dense and separable
intersection, and f is an inhomogeneity or nonlinearity.

Uniqueness of weak solutions to initial data with finite energy has been established for
the concrete case of a degenerate elliptic-parabolic equation

∂b(u)
∂t

+ div(a(b(u),∇u)) = f (2)

by [11] via an L1-contraction principle for b(u). Uniqueness of entropy solutions to L1-initial
data has been shown by [3] (even in presence of transport terms and therefore for degen-
erate elliptic-parabolic-hyperbolic equations), and uniqueness of renormalized solutions has
been proved by [4]. In literature uniqueness is also discussed for several variants of (2) like
the anisotropic case ([9]), the so-called triply nonlinear case ([1]) or the case of variable ex-
ponents ([2]). All these articles have in common that uniqueness is proved via Kruzhkov’s
method of doubling the variables.

In this article, an elementary proof of the uniqueness of strong solutions to the abstract
problem (1) along the lines of [7, 5, 6] is given, see also [12, Section 8.5 and 11.2.3]. While a
discussion of the abstract problem is more general than a discussion of the concrete equation
(2) (e.g. parts of B could be fractional derivatives or general convolution operators), it is a
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major restriction to prove uniqueness only for strong solutions and not for weak, entropy or
renormalized solutions, because in general strong solutions may not exist. However, this is
the price to pay for applying an elementary method instead of a more sophisticated method
like Kruzhkov’s doubling of variables.

1.1. Outline

In Section 2 existence of strong solutions to (1) is established for initial values u0 ∈ X ∩ Y
under the main additional assumption that

〈v∗, dB−1(u∗)v∗〉 ≥ c‖v∗‖2H∗ (3)

holds for all u∗, v∗ ∈ Y∗ with a constant c > 0, where X ∩ Y ⊂ H ⊂ Y is an interpolation triple
with a Hilbert space H. This assumption is equivalent to strong monotonicity of B−1 as an
operator B−1 : Y∗ ⊂ H∗ → H. Note that there are also other situations which allow to prove
the existence of certain types of strong solutions (see [10]), but here we concentrate on this
situation.

For the concrete equation (2) existence of strong solutions can be guaranteed for regular
initial data and potential a = dφa, if b is not only assumed to be nondecreasing, but addition-
ally b−1 is assumed to be differentiable with a nonvanishing derivative at 0. Thus, b must not
be degenerate or singular at 0, but is still allowed to grow nonlinearly.

Uniqueness of strong solutions is shown in section 3 under the convexity assumption that
there is a C < ∞ such that ΦA + CΦB is convex for the potentials ΦA resp. ΦB of A resp. B.
Further, continuous dependence of strong solutions on the initial value and on the right hand
side is established within this abstract framework. However, before we start our discussion let
us mention two examples which illustrate that in general neither u nor Bu need to be unique.

1.2. Examples for non-uniqueness

The following examples illustrate in which way weak solutions of a doubly nonlinear reaction
diffusion equation (2) to an initial value may not be unique.

Example 1. Let A : W1,2(Ω)→ (W1,2(Ω))∗ be the negative of the one-dimensional Laplacian
on the interval Ω B (0, 1) under Neumann-boundary conditions ∂u/∂x = 0 on ∂Ω, and let
B : L2(Ω)→ L2(Ω) be the superposition operator (Bu)(x) B b(u(x)) induced by

b(u) B


u + 1, if u ≤ −1,
0, if − 1 ≤ u ≤ 1,
u − 1, if u ≥ 1.

Obviously, B is a monotone potential operator, which is coercive, bounded and continuous.
However, the equation ∂Bu/∂t+Au = 0 does not have a unique solution u to the zero function
as initial value of Bu. In fact, if u(t, x) is an arbirary continuous function independent of x
which attains values between −1 and 1, then Au(t) = 0 and Bu(t) = 0 for every t. Thus, there
are many weak solution u to the the initial value 0 of Bu.
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Non-uniqueness of u may not be considered as a problem if at least Bu is unique. How-
ever, in general it may even happen that Bu is not unique, as the following example shows,
where B is multivalued (so that B−1 is not strictly monotone), see also [8, Remark 4].

Example 2. Let Ω B (0, 1), let B : L2(Ω)→ L2(Ω) be the superposition operator induced by
the multivalued mapping

b(u) B


u − 1, if u < 0,
[−1, 1], if u = 0,
u + 1, if u > 0,

and let A : W1,2
0 (Ω) → (W1,2

0 (Ω))∗ be the operator 〈Au, w〉 =
∫

Ω
uxwx + b(u)wx dx, i.e. Au =

−uxx − vx on smooth functions with v(t, x) ∈ b(u(t, x)) under Dirichlet conditions u = 0 on
∂Ω. Then one solution to the initial value 1 of Bu is given by u B 0 and v B 1 ∈ Bu, but for
every C ≥ 1 and every C1-function h on [0,∞) with values between 0 and 2 also u B 0 and

v(t, x) B

1, if 0 ≤ t + x ≤ C,
1 − h(t + x −C), if t + x ≥ C,

define a solution with v(0) = 1 due to vt − vx = 0 (and uxx = 0).

§2. Existence of strong solutions

In this section the existence of strong solutions to the abstract equation (1) is discussed by
energy methods for the case that B−1 exists and is strongly monotone as an operator on some
intermediate Hilbert space. However, first let us formulate standard structural assumptions
which allow to prove existence of weak solutions to (1) :

(A1) X and Y are reflexive Banach spaces with a dense and separable intersection X ∩ Y 1,
which is compactly embedded into Y .

(A2) B : Y → Y∗ is a continuous strictly monotone potential operator, which is coercive and
satisfies the growth condition ‖Bu‖Y∗ ≤ C(1 + ‖u‖m−1

Y ) with a constant C < ∞ and a
parameter 1 < m < ∞.

(A3) A : X → X∗ is a pseudomonotone operator, which satisfies the semicoercivity condition
〈Au, u〉 ≥ c1‖u‖

p
X − c2‖u‖X − c3‖Bu‖m

′

Y∗ and has growth ‖Au‖X∗ ≤ C(‖u‖Y )(1 + ‖u‖p−1
X )

for a parameter 1 < p < ∞ with constants c1 > 0, c2, c3 and an increasing function
C : R+

0 → R+
0 .

If f ∈ Lp′ (0,T ; X∗)+ L1(0,T ; Y∗) is an inhomogeneity, then under the assumptions (A1)-(A3)
a weak solution u exists to an initial value u0 ∈ Y in the sense that u ∈ Lp(0,T ; X)∩L∞(0,T ; Y)
is such that Bu ∈ L∞(0,T ; Y∗) has the initial value Bu0 ∈ Y∗ and a weak derivative ∂Bu/∂t ∈
Lp′ (0,T ; X∗) + L1(0,T ; Y∗) satisfying (1) as an equation in (X ∩ Y)∗ for a.e. t ∈ (0,T ), or
equivalently as an equation in Lp′ (0,T ; X∗) + L1(0,T ; Y∗).

1i.e. there are continuous linear embeddings of X and Y into a complete locally convex space Z such that the
intersection X ∩ Y within Z is dense in X resp. Y w.r.t. the norms ‖ · ‖X resp. ‖ · ‖Y , and that X ∩ Y is separable w.r.t.
the norm ‖ · ‖X + ‖ · ‖Y .
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Here we are interested in a slightly different case, where the inhomogeneity f satisfies
f ∈ Lp′ (0,T ; X∗)+L2(0,T ; H∗) for an intermediate Hilbert space H of the inclusion X∩Y ⊂ Y
given by (A1). More precisley, we require that X ∩ Y ⊂ H ⊂ Y is an interpolation triple,
i.e. there is a θ ∈ [0, 1] and a constant C < ∞ such that ‖u‖H ≤ C‖u‖θX‖u‖

1−θ
Y for every

u ∈ X ∩ Y . In this case, under the additional assumptions that B satisfies the coercivity
condition ‖u‖Y ≤ C(1 + ‖Bu‖m

′

Y∗ ) with a constant C < ∞ and p ≥ 2 or 1/2 ≤ θ ≤ p/2 hold,
there exists a weak solution of (1) in the following sense:

Definition 1. A function u ∈ Lp(0,T ; X) ∩ L∞(0,T ; Y) is called a weak solution of equation
(1) to the initial value u0 ∈ Y , if Bu ∈ L∞(0,T ; Y∗) has the initial value Bu0 ∈ Y∗ and a
weak derivative ∂Bu/∂t ∈ Lp′ (0,T ; X∗) + L2(0,T ; H∗) satisfying equation (1) as an equation
in (X ∩ H)∗ for a.e. t ∈ (0,T ), or equivalently as an equation in Lp′ (0,T ; X∗) + L2(0,T ; H∗).

The existence of weak solutions in the sense of Definition 1 can even be generalised to the
case where f = f (t, u) is a nonlinearity. In fact, if B satisfies the stronger coercivity condition
‖u‖Y ≤ C(1 + ‖Bu‖m

′−1
Y∗ ) with a constant C < ∞ and f = f (t, u) is a nonlinearity which

satisfies the growth condition ‖ f (t, u)‖H∗ ≤ C(γ(t) + ‖u‖(m−1)(1−θ)
Y ) with a constant C < ∞ and

a function γ ∈ L2(0,T ), then there still exist weak solutions in the sense of Definition 1.
Now we are interested in assumptions, which guarantee that weak solutions even have

better properties than those mentioned in Definition 1. The following theorem formulates
such assumptions in the special case that B−1 : Y∗ ⊂ H∗ → H is strongly monotone, see [10].

Theorem 1. Additionally to the structural assumptions (A1)-(A3) assume that H is a Hilbert
space such that X ∩ Y ⊂ H ⊂ Y is an interpolation triple and p ≥ 2 or 1/2 ≤ θ ≤ p/2 hold.
Further, assume that

• B−1 : Y∗ → Y is C1, satisfies ‖u‖Y ≤ C(1 + ‖Bu‖m
′−1

Y∗ ) with a constant C < ∞, and is
strongly monotone in the sense that 〈v∗, dB−1(u∗)v∗〉 ≥ c‖v∗‖2H∗ for all u∗, v∗ ∈ Y∗ with a
constant c > 0 2,

• A : X → X∗ is a potential operator such that the intersection of Y and the domain
D(A) B {u ∈ X | Au ∈ H∗} of A w.r.t. H∗ is dense in X ∩ Y,

• f is an inhomogeneity in L2(0,T ; H∗) or a nonlinearity f = f (t, u) such that g(t, u) B
dB−1(Bu)∗ f (t, u) satisfies the growth condition ‖g(t, u)‖H ≤ C

(
γ(t) + ‖u‖(m−1)(1−θ)

Y

)
with

a constant C < ∞ and a function γ ∈ L2(0,T ).

Then there exists to every initial value u0 ∈ X ∩ Y a strong solution u of equation (1) in
the sense that u is a weak solution which additionally satisfies u ∈ L∞(0,T ; X), and Bu ∈
L∞(0,T ; Y∗) and a weak derivative ∂Bu/∂t ∈ L2(0,T ; H∗).

Let us shortly sketch the proof of this theorem given in [10].

Proof. Use a Faedo-Galerkin method and consider the restrictions

∂Bkuk

∂t
+ Akuk = fk (4)

of equation (1) to an increasing sequence of finite-dimensional subspaces Wk ⊂ D(A) ∩ Y ⊂
X ∩ Y , where Ak, Bk are the restrictions of A, B to Wk and fk is a continuous approximation

2This condition is equivalent to strong monotonicity of B−1 as an operator B−1 : Y∗ ⊂ H∗ → H ⊂ Y , i.e. to
〈u∗ − v∗, B−1u∗ − B−1v∗〉 ≥ c‖u∗ − v∗‖2H∗ for arbitrary u∗, v∗ ∈ Y∗ with a constant c > 0.



Uniqueness of strong solutions to doubly nonlinear evolution equations 175

of f with values in Wk. Due to (A1)-(A3) short-time existence of solutions uk of this ODE
to initial values u0k ∈ Wk can be guaranteed. Test (4) by uk to obtain from the semicoercivity
condition on A the a priori estimate

Φ̂B(uk(t)) +

(
c1 −

ε p

p

) ∫ T

0
‖uk(s)‖pX ds

≤ Φ̂B(u0k) +
1

p′ε p′ |c2|
p′T +

∫ t

0
c3‖Bkuk(s)‖m

′

Y∗ ds +

∫ t

0
‖ fk(s)‖H∗‖u‖H ds ,

where Φ̂B(u) = Φ∗B(Bu) denotes the Legendre transform of the convex potential ΦB of B in
dependence of Bu, ε > 0 is sufficiently small and the energy identity d

dt Φ̂B(u) = 〈 ∂Bu
∂t , u〉

was used. As a consequence of the growth condition ‖Bu‖Y∗ ≤ C(1 + ‖u‖m−1
Y ) we have

‖Bu‖m
′

Y∗ ≤ C(1 + Φ̂B(u)), as a consequence of the coercivity condition ‖u‖Y ≤ C(1 + ‖Bu‖m
′

Y∗ )
we have ‖u‖Y ≤ C(1 + Φ̂B(u)), and the assumptions p ≥ 2 or 1/2 ≤ θ ≤ p/2 allow to estimate
the last term by C

∫ t
0 (1 + Φ̂B(u)) ds in the case that f ∈ L2(0,T ; H∗) is an inhomogeneity. In

the case that f = f (t, u) is a nonlinearity apply inequality (3) to u∗ B Bu, v∗ B f (t, u), to
obtain

c‖ f (t, u)‖2H∗ ≤ 〈 f (t, u), dB−1(Bu) f (t, u)〉 = 〈 f (t, u), g(t, u)〉 ≤ ‖ f (t, u)‖H∗‖g(t, u)‖H

so that by the assumptions on g the growth condition

‖ f (t, u)‖H∗ ≤
1
c
‖g(t, u)‖H ≤

C
c

(
γ(t) + ‖u‖(m−1)(1−θ)

Y

)
is valid and the last term can again be estimated by C

∫ t
0 (1 + Φ̂B(u)) ds. Thus, Gronwall’s

lemma allows to deduce uniform bounds w.r.t. k of uk in L∞(0,T ; Y) ∩ Lp(0,T ; X), Buk in
L∞(0,T ; Y∗) and Auk in Lp′ (0,T ; X∗). Due to these bounds a weakly convergent subsequence
uk ⇀ u can be extracted. Finally, time-compactness and pseudomonotonicity allow to con-
clude that u is a weak solution of (1).

To obtain a strong solution we would like to test the approximate equation (4) by ∂uk/∂t,
but (4) only guarantees the existence of ∂Bkuk/∂t ∈ C(0,T ; W∗) and not the existence of
∂uk/∂t. However, as B−1 is assumed to be continuously differentiable, the chain rule implies
the existence of

∂u
∂t

= dB−1(Bu)
∂Bu
∂t

. (5)

Due to Wk ⊂ D(A) and fk ∈ L2(0,T ; H∗) a solution uk ∈ C1(0,T ; Wk) of the approximate
equation (4) satisfies ∂Bkuk/∂t ∈ H∗ for a.e. t. Especially, inequality (3) can be applied to
u∗ B Buk(t), v∗ = ∂Buk(t)/∂t, to obtain〈

∂Bkuk

∂t
,
∂uk

∂t

〉
≥ c

∥∥∥∥∥∂Buk

∂t

∥∥∥∥∥2

H∗
.

Further, as g(t, u) B dB−1(Bu)∗ f (t, u) satisfies ‖g(t, u)‖H ≤ C(γ(t) + ‖u‖(m−1)(1−θ)
Y ) with a

constant C < ∞ and a function γ ∈ L2(0,T ), and as a uniform bound of uk in L∞(0,T ; Y)
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w.r.t. k has already been established, we can conclude that g(·, uk(·)) is uniformly bounded in
L2(0,T ; H). Thus, a test of (4) by ∂uk/∂t yields(

c −
ε2

2

) ∥∥∥∥∥∂Buk

∂t

∥∥∥∥∥2

H∗
+

d
dt

ΦA(uk) ≤
1

2ε2 ‖g(·, uk(·))‖2H ≤ C

with a constant C < ∞ for sufficiently small ε > 0 . Using this differential inequality uniform
a priori estimates w.r.t. k of ∂Buk/∂t in L2(0,T ; H∗) and uk in L∞(0,T ; X) can be established.
Therefore, additionally we are able to guarantee weak∗ convergence of a subsequence of the
approximate solutions uk in L∞(0,T ; X) and weak convergence of ∂Buk/∂t in L2(0,T ; H∗), It
is simple to verify that the weak limits of these sequences are identical with their expected
values u and ∂Bu/∂t, hence the proof of Theorem 1 is finished. �

As a consequence of Theorem 1 we have Bu ∈ W1,2(0,T ; H∗) ⊂ C(0,T ; H∗) for strong
solutions due to Bu ∈ L∞(0,T ; Y∗) ⊂ L2(0,T ; H∗) and ∂Bu/∂t ∈ L2(0,T ; H∗). Further, as
∂Bu/∂t and f lie in L2(0,T ; H∗), also Au = f − ∂Bu/∂t lies in L2(0,T ; H∗). Therefore,
equation (1) holds as an equation in H∗ for a.e. t ∈ [0,T ], and thus u(t) ∈ D(A) for a.e.
t ∈ [0,T ]. Let us explicitly mention this observation as a corollary.

Corollary 2. Under the assumptions of Theorem 1 the relation Au ∈ L2(0,T ; H∗) holds for a
strong solution u, and equation (1) is valid as an equation in H∗ for a.e. t ∈ (0,T ).

The following example shows how Theorem 1 can be applied to the concrete problem (2).

Example 3. Let Ω ⊂ Rn be a bounded domain and let 1 < m < 2. Consider the space
Y B Lm(Ω) so that H B L2(Ω) is continuously embedded into Y . Assume that φb : R→ R is a
convex function which behaves like (C1/2)|u|2+o(|u|2) as |u| → 0 and like (C2/m)|u|m+ω(|u|m)
as |u| → ∞. Denote by b B dφb the derivative of φb and by B : Y → Y∗ the corresponding
superposition operator. Then b−1(u) behaves like C1

−1u as |u| → 0 and like C1−m′
2 |u|m

′−2u as
|u| → ∞, so that (b−1)′(u) behaves like C1

−1 as |u| → 0 and like (m′ − 1)C1−m′
2 |u|((2−m)/(m−1))

as |u| → ∞. Especially, pointwisely (b−1)′(u) ≥ c for a constant c > 0 so that

c‖v∗‖22 =

∫
Ω

c|v∗|2 dx ≤
∫

Ω

(b−1)′(u∗)|v∗|2 dx

and as a consequence

〈v∗, dB−1(u∗)v∗〉 ≥ c‖v∗‖22

for all u∗, v∗ ∈ Y∗, i.e. inequality (3) is valid. Note that although b is not degenerate or singular
at u = 0, the operator B can not be realized as an operator on H as b grows like C|u|m−1 as
|u| → ∞. Thus (2) is not degenerate or singular at u = 0, but still should be considered as an
equation for u ∈ Y and not for u ∈ H.

Finally, assume that a has a p-coercive potential, 1 < p < ∞, e.g. a(∇u) = |∇u|p−2∇u, and
consider the corresponding operator A : W1,p

0 (Ω) → (W1,p
0 (Ω))∗, 〈Au, v〉 B

∫
Ω

a(∇u) · ∇u dx,
so that (2) is solved under Dirichlet boundary conditions. For this choice X B W1,p

0 (Ω), and
m < p∗ has to be required to have a compact embedding X∩Y ⊂ Y . Now Gagliardo-Nirenberg
inequalities

‖u‖L2 ≤ ‖∇u‖θLp∗ ‖u‖
1−θ
Lm



Uniqueness of strong solutions to doubly nonlinear evolution equations 177

are valid for 1/2 = θ/p∗ + (1 − θ)/m, 1/p∗ ≤ 1/2, where the parameter θ of the interpolation
triple X ∩ Y ⊂ H ⊂ Y is given by θ = ((2 − m)p∗)/(2(p∗ − m)). Especially, in the case p < 2
the inequality 1/2 ≤ θ ≤ p/2 is valid iff

(
(2 − p)p∗

)
/ (p∗ − p) ≤ m ≤ p∗/(p∗ − 1). For

example, if n = 3 and p is slightly smaller than 2, then already m < 6/5 has to be required.
Further, the right hand side f of (2) and g B dB−1(Bu)∗ f (u) are related by

f (t, x, u) =
g(t, x, u)
(b−1)′(u)

, (6)

where (b−1)′ is bounded away from zero. Thus, if g(t, x, u) is a pregiven nonlinearity such
that |g(t, x, u)| ≤ C

(
γ(t, x) + |u|(m−1)(1−θ)

)
, then by (6) a corresponding right hand side f can

be defined such that the assumptions of Theorem 1 are satisfied. Thus, under the former
conditions there exists a strong solution of (2) to initial values u0 ∈ W1,p

0 (Ω) ∩ Lm(Ω).
Finally, it can be shown that inhomogeneities

f ∈ L
2
(
(m(m−1)2(p∗−2))

/(
2(2−m)(p∗−m)

))′ (
0,T ; L

(
2m(m−1)

)/(
(m+1/2)2−17/4

)
(Ω)

)
can be represented via (6) by a function g(t, x, u) = f (t, x)(b−1)′(u) satisfying the growth
condition provided that

√
17 − 1

2
< m ≤ 2 and p∗ >

2m(m2 − m − 1)
m3 − 2m2 + 3m − 4

in the case p < n.

§3. Uniqueness of strong solutions

Under the assumptions of Theorem 1 equation (1) admits a strong solution to an initial value
u0 ∈ X∩Y in the sense that u ∈ L∞(0,T ; X∩Y) is a weak solution such that Bu ∈ L∞(0,T ; Y∗)
has a weak derivative ∂Bu/∂t ∈ L2(0,T ; H∗), and especially Au ∈ L2(0,T ; H∗). The following
theorem guarantees uniqueness of strong solutions and continuous dependence on the initial
value and the right hand side.

Theorem 3. Additionally to the assumptions of Theorem 1 suppose that there is a constant
C < ∞ such that

〈Au − Av, u − v〉 + C〈Bu − Bv, u − v〉 ≥ 0 for all u, v ∈ X ∩ Y and (7)

〈Bu − Bv, dB−1(Bu)Au − dB−1(Bv)Av〉 + C〈Bu − Bv, u − v〉 ≥ 0 for all u, v ∈ D(A) ∩ Y , (8)

where D(A) = {u ∈ X | Au ∈ H∗} denotes the domain of A w.r.t. H∗. Then the following
statements are valid:

• If f = 0, then strong solutions of equation (1) are unique.

• If f ∈ L1(0,T ; Y∗) and dB−1 : Y∗ ⊂ H → L(Y∗,H) is Lipschitz continuous, then strong
solutions of equation (1) are unique and Y 3 u0 7→ Bu ∈ C(0,T ; H∗) is continuous.

• If dB−1 and B−1 are Lipschitz continuous, then Y × L1(0,T ; Y∗) 3 (u0, f ) 7→ Bu ∈
C(0,T ; H∗) is continuous.
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Remark 1. Note that inequality (7) is equivalent to the convexity of ΦA + CΦB on X ∩ Y ,
while inequality (8) is equivalent to the convexity of ΦA ◦ B−1 + CΦ∗B on B(D(A)∩ Y), where
Φ∗B is the Legendre transform of ΦB and hence a potential of B−1.

Proof. Assume that u, v are strong solutions of

∂Bu
∂t

+ Au = f1 resp.
∂Bv
∂t

+ Av = f2 .

To prove uniqueness, test the difference of these equations by u− v and integrate the resulting
equation over [0, t] to obtain∫ t

0

〈
∂

∂s
(Bu − Bv), u − v

〉
ds +

∫ t

0
〈Au − Av, u − v〉 ds =

∫ t

0
〈 f1 − f2, u − v〉 ds .

Now 〈
∂

∂s
(Bu − Bv), u − v

〉
=

d
dt
〈Bu − Bv, u − v〉 −

〈
Bu − Bv,

∂

∂s
(u − v)

〉
and thus∫ t

0

〈
∂

∂s
(Bu − Bv), u − v

〉
ds =

(
〈Bu − Bv, u − v〉

)
(t) −

(
〈Bu − Bv, u − v〉

)
(0)

−

∫ t

0

〈
Bu − Bv, dB−1(Bu)( f1 − Au) − dB−1(Bv)( f2 − Av)

〉
ds

due to ∂u/∂t = dB−1(Bu)∂Bu/∂t = dB−1(Bu)( f1−Au) and similar for v. Hence, if f1 = 0 = f2,
then

(〈Bu − Bv, u − v〉)(t)

=
(
〈Bu − Bv, u − v〉

)
(0) −

∫ t

0
〈Au − Av, u − v〉 ds −

∫ t

0
〈Bu − Bv, dB−1(u)Au − dB−1(v)Av〉 ds

≤
(
〈Bu − Bv, u − v〉

)
(0) + 2C

∫ t

0
〈Bu − Bv, u − v〉 ds

due to the assumptions (7) and (8). By Gronwall’s lemma(
〈Bu − Bv, u − v〉

)
(t) ≤

(
〈Bu − Bv, u − v〉

)
(0) exp(2Ct) ,

so that u(0) = v(0) implies
(
〈Bu−Bv, u− v〉

)
(t) = 0 for a.e. t ∈ [0,T ] and hence u = v by strict

monotonicity of B.
If f1 = f2 =: f ∈ L1(0,T ; Y∗), then

(〈Bu − Bv, u − v〉)(t)

=
(
〈Bu − Bv, u − v〉

)
(0) −

∫ t

0
〈Au − Av, u − v〉 ds

−

∫ t

0
〈Bu − Bv, dB−1(u)Au − dB−1(v)Av〉 ds +

∫ t

0
〈Bu − Bv, (dB−1(Bu) − dB−1(Bv)) f 〉 ds

≤
(
〈Bu − Bv, u − v〉

)
(0) + 2C

∫ t

0
〈Bu − Bv, u − v〉 ds + M

∫ t

0
‖Bu − Bv‖2H∗‖ f ‖Y∗ ds
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with the Lipschitz constant M of dB−1 : Y∗ ⊂ H∗ → L(Y∗,H). By strong monotonicity of
B−1 : Y∗ ⊂ H∗ → H the inequality ‖Bu − Bv‖2H∗ ≤ c−1〈Bu − Bv, u − v〉 is valid, hence by
Gronwall’s lemma(

〈Bu − Bv, u − v〉
)
(t) ≤

(
〈Bu − Bv, u − v〉

)
(0) exp(2CT +

M
c

∫ T

0
‖ f ‖Y∗ ds) .

Especially, again by strong monotonicity of B−1

c‖Bu(t) − Bv(t)‖2H∗ ≤ ‖Bu(0) − Bv(0)‖Y∗‖u(0) − v(0)‖Y exp
(
2CT +

M
c

∫ T

0
‖ f ‖Y∗ ds

)
,

so that Y 3 u(0) 7→ Bu ∈ C(0,T ; H∗) is continuous.
Finally, if f1, f2 ∈ L1(0,T ; Y∗), then the additional terms may be estimated by∫ t

0
〈 f1 − f2, u − v〉 ds ≤

L
2

∫ t

0
‖ f1 − f2‖Y∗ (1 + ‖Bu − Bv‖2H∗ ) ds ,

with the Lipschitz constant L of B−1 : Y∗ ⊂ H∗ → Y and by∫ t

0
〈Bu − Bv, dB−1(Bu) f1 − dB−1(Bv) f2〉 ds

≤ M
∫ t

0
‖Bu − Bv‖2H∗‖ f1‖Y∗ ds +

MK
2

∫ t

0
(1 + ‖Bu − Bv‖2H∗ )‖ f1 − f2‖Y∗ ds ,

with a bound K of dB−1(Bv) in C(0,T ; L(Y∗,H)). Thus,(
〈Bu − Bv, u − v〉

)
(t) ≤

((
〈Bu − Bv, u − v〉

)
(0) +

MK + L
2

∫ T

0
‖ f1 − f2‖Y∗ ds

)
exp

(
2CT +

M
c

∫ T

0
‖ f1‖Y∗ ds +

MK + L
2c

∫ T

0
‖ f1 − f2‖Y∗ ds

)
,

and especially

c2‖Bu(t) − Bv(t)‖2H∗ ≤
(
‖Bu(0) − Bv(0)‖Y∗‖u(0) − v(0)‖Y +

MK + L
2

∫ T

0
‖ f1 − f2‖Y∗ ds

)
exp

(
2CT +

M
c

∫ T

0
‖ f1‖Y∗ ds +

MK + L
2c

∫ T

0
‖ f1 − f2‖Y∗ ds

)
,

so that Y × L1(0,T ; Y∗) 3 (u(0), f ) 7→ Bu ∈ C(0,T ; H∗) is continuous. �

§4. Conclusion

In this article strong solutions to abstract doubly nonlinear evolution equations were discussed
under the assumption that B−1 is strongly monotone on some intermediate Hilbert space. In
this case, strong solutions behave similar as strong solutions to nonlinear evolution equations
∂u/∂t + Au = f . Particularly, under the two convexity conditions (7) and (8) it is possible
to give an elementary proof of uniqueness and to obtain continuous dependence on the data.
However, for degenerate resp. singular problems where merely weak solutions exist it does
not seem possible to avoid more sophisticated methods like Kruzhkov’s doubling of variables.
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