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Abstract. The interaction of a Rydberg atom with a circularly polarized microwave field
leads, with finely tuned parameters, to the creation of stable equilibrium positions similar
to the well known Lagrangian equilibrium points in celestial mechanics (cf. [6]). Besides,
the addition of a static magnetic field, perpendicular to the plane of polarization, can be
used to manipulate the stability properties of the equilibria (cf. [9] and [10]).

The aim of this communication is the characterization of nonlinear stability properties
for equilibrium points by making use of appropriate results, based on KAM theory. Spe-
cial attention will be paid when resonance conditions take place between the fundamental
frequencies of the system.
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§1. Introduction

The dynamics of a hydrogen atom in the presence of a circularly polarized (CP) microwave
field crossed with a magnetic field B, denoted hereafter by CP × B, is known to give rise
to two different behaviors (cf. [9]). On the one hand, the electron can follow a perturbed
Keplerian orbit, which can be studied under the point of view of classical mechanics, by
means of perturbation methods (cf. [8]). On the other hand, the electron can be trapped in
a region beyond the Stark saddle point, by properly tuning the external parameters of the
problem.

The last case is specially interesting, because of the appearance of equilibrium points
similar to the Lagrangian points in the restricted three body problem. These points are di-
rectly linked with the ionization threshold for the electron (cf. [6]). Besides this remarkable
connection, the stability properties of these points are also of interest as they are the key to
have a real trapping region. In this way, the main goal of this work is the characterization
of nonlinear stability properties of these points as a function of the external parameters. We
will not pay attention to the size of the region of stability, a question that deserves a further
analysis and that is relevant to get an effective trapping region.

The problem we deal with has also a Celestial Mechanics counterpart, as it describes the
dynamics of a dust particle subject to radiation pressure, the sun magnetic field and orbiting
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an idealized planet that revolves around the sun in circular orbit. In this context, the existence
of stable trapping regions associated with stable equilibrium points may account for dust
clouds responsible for the phenomenon known as zodiacal light (cf. [12]).

§2. The problem

In atomic units, the Hamiltonian of the problem CP × B, in the dipole aproximation, is given
by

H =
1
2

(P2
x +P2

y+P2
y)−

1√
x2 + y2 + z2

+
ωc

2
(xPy−yPx)+

ω2
c(x2 + y2)

8
± f (x cosω f t+y sinω f t),

where the magnetic field is supposed to be parallel to the direction of the z-axis, ωc is the
cyclotron frequency, ω f is the CP field frequency and f the electric field strength ( f > 0).
The plus or minus sign depends on the polarization direction of the microwave field.

The explicit time dependence in the Hamiltonian can be removed by going to a sinodic
reference frame that rotates at the constant angular velocity ω f , in such a way that the moving
x-axis is aligned with the direction of the electric field. The new Hamiltonian becomes

H =
1
2

(P2
x + P2

y + P2
z ) −

1√
x2 + y2 + z2

−

(
ω f ±

ωc

2

)
(xPy − yPx) +

ω2
c(x2 + y2)

8
± f x. (1)

In this work, we study the planar model, that is the model restricted to the invariant set
z = Pz = 0. In this way, by setting z and Pz to zero in (1), we obtain the Hamiltonian
corresponding to the plane case:

H =
1
2

(P2
x + P2

y) −
1√

x2 + y2
−

(
ω f ±

ωc

2

)
(xPy − yPx) +

ω2
c(x2 + y2)

8
± f x. (2)

As we are interested in the equilibria of the system given by the Hamiltonian (2) we have
to solve the corresponding Hamilton equations equated to zero. These are

ẋ = Px + ωy,

ẏ = Py − ωx,

Ṗx = −
x
r3 + ωPy ∓ f −

ω2
c

4
x,

Ṗy = −
y

r3 − ωPx −
ω2

c

4
y,

where ω = ω f ± ωc/2 and r =
√

x2 + y2.
From the system above it follows that an equilibrium point (x, y, Px, Py) must verify Px =

y = 0 and Py = ωx. Moreover, x must be a positive root of the equation

ω f (ω f ± ωc)x3 ∓ f x2 − 1 = 0,
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or a negative root of the equation

ω f (ω f ± ωc)x3 ∓ f x2 + 1 = 0.

The discussion on the number of equilibria is summarized in the following proposition
Proposition 1. For the positive sign in (2), there are two equilibrium points, one of them with
x < 0 and the other one with x > 0. For the minus sign in (2), the number of equilibrium
points depends on the sign of ω f (ω f − ωc):
• If ω f (ω f − ωc) > 0, then there are 2 equilibria, one with x > 0 and another one with

x < 0.

• If ω f (ω f − ωc) = 0, there is one equilibrium point with x > 0.

• If ω f (ω f − ωc) < 0, there are two equilibria if f > Fc, where Fc = 3
√

27
4 ω

2
f (ω f − ωc)2.

In this case, the two of them verify x > 0. If f ≤ Fc, no equilibria exist.
To study the stability properties of the equilibrium points we introduce a function of the

coordinates x and y, usually called the effective potential, in such a way that linear stable
points correspond to relative maxima and minima of this function. In the positive case, the
effective potential is given by

EPp = f x −
1
2
ω f (ωc + ω f )(x2 + y2) −

1√
x2 + y2

.

As a result, the equilibrium with x > 0 is a maximum and the equilibrium with x < 0 is a
saddle. In the negative case, the effective potential reads as

EPn = − f x −
1
2
ω f (ωc − ω f )(x2 + y2) −

1√
x2 + y2

,

and the character of the equilibria depends on the sign of ω f (ω f − ωc). In this sense, if
ω f (ω f − ωc) > 0, the equilibrium with x > 0 is a saddle and the equilibrium with x < 0 is
a maximum. If ω f (ω f − ωc) < 0 and f > Fc, one of the positive equilibria is a saddle (we
call xs) and the other is a minimum (we call xm).

The previous analysis shows that there are two different configurations for the effective
potential, maximum-saddle or minimum-saddle (cf. [7]). It is known that saddle points cor-
respond to unstable points and a minimum give rise to a nonlinear stable point (cf. [13]),
as it follows from Dirichlet’s theorem (cf. [14]). On the other hand, a maximum is a linear
stable point but its character from the point of view of Lyapunov is not decided. In this way,
there are well known counterexamples where a linear stable point of a Hamiltonian system is
unstable in the Lyapunov sense (cf. [3]). To solve the question of nonlinear stability we will
make use of KAM theory and the next sections are devoted to introduce the results we will
use.

§3. Lyapunov stability

One of the results from KAM theory is Arnold’s theorem (cf. [1]) that guarantees nonlin-
ear stability of a maximum for almost all set of admissible external parameters. Here we
reproduce the version of this theorem given by Meyer and Schmidt in (cf. [11]).
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Theorem 2. Let be a two degrees of freedom Hamiltonian system expressed in variables
(Ψ1,Ψ2, ψ1, ψ2) as

H = H2(Ψ1,Ψ2) +H4(Ψ1,Ψ2) + · · · +H2N(Ψ1,Ψ2) +H(Ψ1,Ψ2, ψ1, ψ2)

where it is verified that:

1. H is a real analytic function in a neighborhood of the origin.

2. Each H2k, 1 ≤ k ≤ N is a homogeneous polynomial of degree k in Ψ1,Ψ2 with real
coefficients independent of the angles. In particular,

H2 = ω1Ψ1 − ω2Ψ2, ω1, ω2 > 0, (3)

H4 =
1
2

(AΨ2
1 − 2BΨ1Ψ2 + CΨ2

2),

where A, B and C depend on the parameters of the Hamiltonian.

3. H = H(Ψ1,Ψ2, ψ1, ψ2) = O((Ψ1 + Ψ2)2N+1).

With these conditions, the origin is a stable equilibrium if exists 2 ≤ k ≤ N such as

D2k = H2k(ω2, ω1) , 0,
D2 j = H2 j(ω2, ω1) = 0, 2 ≤ j < k.

The practical implementation of this theorem yields a great amount of computation work.
First, the Hamiltonian must be expressed in action–angle variables, in such a way the quadra-
tic part reduces to (3).

This is achieved by means of a linear transformation. Next, the most tricky part of the
process, the Hamiltonian must be brought to the so-called Birkhoff normal form (cf. [2] and
[15]) up to a certain order through the application of successive canonical transformations
near to the identity. This process can be made in a recursive manner using the algorithm
of the Lie–Deprit perturbation method (cf. [4]). This process simplifies if it is carried out
in complex variables, returning to Poincare, or action-angle, variables at the end. Once the
normalization has been completed Arnold’s theorem can be applied.

We note that in the statements of theorem 2 there are some implicit assumptions. The first
one is that the Hamiltonian is written in normal form, that is, the computation work is already
supposed done. The second one is that the frequencies of the system ω1 and ω2 are not in
resonance of order less or equal than 2N, because the termsH2k, 1 ≤ k ≤ N, only depend on
the momenta Ψ1 and Ψ2. When the frequencies of the system verify a resonance condition,
the normal form is no longer as those presented in the theorem and terms depending on the
angles ψ1 and ψ2 appear.

To handle resonant cases we need a more general result. In this sense we will make use of
a geometric criterion (cf. [5] and [13]), that extends Arnold’s theorem to the resonant cases.

§4. The geometric criterium

Let us suppose that H2 can be written as in (3). Then, the Hamiltonian H can be brought to
normal form, in such a way thatH2 becomes a formal integral. Also let us assume thatω1 and
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ω2 satisfy a n:m resonant condition of order greater or equal than two, that is, nω1 −mω2 = 0
with n + m ≥ 2. Under these assumptions we introduce a set of action–angle variables named
Lissajous variables, with a twofold goal. On the one hand, the formal integral depends on
one of the actions and the normalization procedure can be viewed as the elimination of a fast
variable by means of an averaging process.

Lissajous variables (Φ1,Φ2, φ1, φ2) are specifically designed for each particular value of
the resonance n:m and they are related with the Poincaré variables through the formulae

Ψ1 =
Φ1 + Φ2

2m
, ψ1 = m(φ1 + φ2),

Ψ2 =
Φ1 − Φ2

2n
, ψ2 = n(φ1 − φ2).

Now,H2 turns to be simply νΦ2, being

ν =
ω1

m
=
ω2

n
.

Besides, the Poisson’s bracket (H2,H j), needed to compute the normal form, is just

(H2,H j) = ν
∂H j

∂φ2
,

and the process of normalization is no more than an averaging over the φ2 angle.
Moreover, the normal form is generated by the invariants (cf. [5]) M1, M2, C and S that,

as functions of Lissajous variables, are given by

M1 =
1
2

Φ1, C = 2−(m+n)/2(Φ1 − Φ2)m/2(Φ1 + Φ2)n/2 cos 2nmφ1,

M2 =
1
2

Φ2, S = 2−(m+n)/2(Φ1 − Φ2)m/2(Φ1 + Φ2)n/2 sin 2nmφ1.

(4)

In this way, the normal form up to order N is written as

H = H2 +

N∑
j=3

H j,

whereH2 = 2ωM2, and

H j =
∑

2(γ1+γ2)+(n+m)(γ3+γ4)= j

aγ1γ2γ3γ4 Mγ1
1 Mγ2

2 Cγ3 S γ4 , 3 ≤ j ≤ N,

with aγ1γ2γ3γ4 ∈ R.
The invariants are not independent and they satisfy the equation

C2 + S 2 = (M1 + M2)n(M1 − M2)m, (5)

together with the restriction
M1 ≥ |M2| . (6)
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Note that the reduced phase space is given by the equation (5) and the restriction (6). It is a
set of surfaces of revolution, one for each constant value of M2. Fixed a value for M2, (5) is
a surface of revolution with a vertex in the point M1 = |M2|, C = S = 0.

Once the reduced phase space is determined, it is possible to know the flow of the nor-
malized system, when it is truncated to a prescribed order. Indeed, the flow results as the
intersection of the normalized Hamiltonian function with the surface defined by (5). Based
on this idea, in (cf. [5] and [13]), Elipe et al. established the following results, the first is the
geometric criterion and the second one is a derived result from it.

Theorem 3. Let us assume that the Hamiltonian is normalized up to a certain order N ≥ s,
beingHN the first term that does not vanish for M2 = 0. Let us consider the two surfaces

G1 = {(C, S ,M1) ∈ R3; HN(C, S ,M1, 0) = 0},

and
G2 = {(C, S ,M1) ∈ R3; C2 + S 2 = Ms

1}.

If the origin is an isolated point of intersection, then it is stable. In other case, if the two
surfaces are not tangent, the origin is unstable.

Theorem 4. Let us assume thatHs (s is the order of resonance) is the first term in the normal
form that does not vanish for M2 = 0. If s is odd (s ≥ 3), then Hs(C, S ,M1, 0) = γC + ηS
with γ2 + η2 , 0 and the origin is an unstable equilibrium. If s is even (s ≥ 4), then
Hs(C, S ,M1, 0) = asMs/2

1 + γC + ηS with a2
s + γ2 + η2 , 0 and the stability of the origin

depends on the relative values of a2
s and γ2 + η2: if a2

s > γ2 + η2, the origin is a stable
equilibrium, whereas if a2

s < γ
2 + η2, the origin is unstable.

§5. Resonant cases

Using the previous results, we study the Lyapunov stability of the maximum when it is ver-
ified a resonant condition. We start with the resonance of order three to be followed by the
fourth order resonance.

5.1. 1:2 resonance
For a 1:2 resonance (ω1 = 2ω2), the term of order 3 in the normal form can be expressed in
complex variables as

H3 = a1002uV2 + a0120Uv2,

where a1002 = ia0120 and a0120 ∈ C. Therefore

H3 = a0120(Uv2 − iuV2).

Expressed in Lissajous invariants,H3 can be written as

H3 = asS ,

with as = −a0120
√

2.
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Then, the two surfaces, from the geometric criterion, are given by

G1 = {(C, S ,M1) ∈ R3 | asS = 0},

G2 = {(C, S ,M1) ∈ R3 |C2 + S 2 = M3
1 , M1 ≥ 0}.

It is clear that if as , 0, then G1 ∩ G2 = {(C, S ,M1) ∈ R3 | S = 0,C = ±M3/2
1 } and

therefore, the equilibrium is unstable. By the contrary, if as = 0, then H3(M2 = 0) = 0 and
also H3 ≡ 0, and, in consequence, we need more terms of the normal form to decide about
the stability. We have to compute the next term in the normal form, that is, H4. In this way
the next nonzero term in the normal formH4 can be written, in complex variables, as

H4 = a1200uU2 + a1111uUvV + a0012vV2.

Once expressed in terms of the real invariants, we have that

H4(M2 = 0) =
29.877
ω4x8

0

M2
1 ,

where x0 is the x coordinate of the equilibrium point and ω = ωc +
ω f

2 . Therefore the origin
is the only point in the intersection G1 ∩G2 and, as a consequence of the geometric criterion,
the equilibrium is stable.

5.2. 1:3 resonance

In presence of a 1:3 resonance, the term of fourth order in the normal form H4 evaluated at
M2 = 0 is given, in complex variables, by

H4 = a2200u2U2 + a1111uUvV + a0022v
2V2 + a1003uV3 + a0130Uv3.

Expressed in Lissajous invariants,H4 can be written as

H4(M2 = 0) = amM2
1 + acC + asS ,

being am, ac, as dependent on the parameters of the problem and the coordinates of the equi-
librium point.

In our problem it is always verified that a2
m > a2

c + a2
s . Therefore, as a consequence of

Theorem 4, the equilibrium is always stable.
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