Monograffas Matematicas Garcia de Galdeano 37, 79-90 (2012)

AN APPLICATION
OF CARLEMAN INEQUALITIES
FOR A CURVED QUANTUM GUIDE

Laure Cardoulis

Abstract. We consider in this paper the Schrodinger operator —id, — A on a curved quan-
tum guide in R? for which the reference curve is asymptotically straight. Using an adapted
Carleman estimate, we establish a local estimation result for the curvature with a single
observation.
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§1. Introduction

Let Q c R? be a curved quantum guide with a fixed width d > 0 and let T > 0. We consider
the Schrodinger operator
H:=—-id; - AinQx(0,T).

We proceed as in [8] and [4]. We denote by I' = (I'1, ;) the function which characterizes the
reference curve and by N = (Ny, N,) the outgoing normal. We denote by

Q; =R x(d,2d).
Each point (x, y) of Q is described by the curvilinear coordinates (s, u) as follows:
f:Q — Q with (x,y) = f(s,u) = I'(s) + uN(s). (1)

We assume 1"’1(s)2 + l"’z(s)2 = 1 and we recall that the signed curvature y of I" is defined
by y(s) = =I'{ (s)[;(s) + IT7 ()"} (s), named so because |y(s)| represents the curvature of the
reference curve at s. We assume throughout this paper that:

Assumption 1.
e ye(C 3(R), y(k) e L(R) for each k = 0,1, 2,3, where y(") denotes the k-th derivatives
of y.
* ¥(s) » Oas|s| = ccand 1 - 2d|lyllec > 0, where |[ylleo = supyep [Y(9)] = [IYllLom)-
Note that, by the inverse function theorem, the map f defined by (1) is a diffeomorphism
provided 1 — uy(s) # O, for all u, s, which is guaranteed by Assumption 1. The curvilinear

coordinates (s, u) are locally orthogonal so the metric in Q is expressed with respect to them
through a diagonal metric tensor ((1’”3(”)2 ?) The transition to the curvilinear coordinates
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Figure 1: Geometry of the problem

represents an isometric map of L2(Q) to L*(Qy,g'/? dsdu), where g(s,u) = (1 — uy(s))? is
the Jacobian d(x, y)/d(s, u). Therefore we can replace the operator H (with the metric dx dy
on Q) by the operator H, (with the metric g'/?ds du on Q;), where

Hy = =id, = g~'%0.(g7'18,) = g7 0u(9'0,).

Then we can rewrite the operator H,, into a Schrodinger-type operator (with the metric ds du
on Q). Indeed, using the unitary transformation U,(y) = g” 41//, setting H, = U,H,, Ug‘l, we
get

H, = —id; — 05(c, (s, u)ds) — 2 + V, (s, u)

with |
Cy(S, u) = m (2)
and
Y2(s) uy” (s) 5u*y*(s)

V,(s,u) = K2 20 -w()} M1 —uy(s)

Let R := (R|,R,) € R? and € > 0. We denote by
Qre = wre U(IR) + €, Ry — €[ X 12d — 2¢,2d])
a regular bounded domain in Q;, with
WR,e = WR, e Y WR, ¢,
WR, e = {(s,u)eRz, Ri<s<Ri+e€ 2d-2e<u<2d, (s— Ry —e)2+(u—2d+e)2 < €},
WRye = {(s,u)ERz, Ry—€e<s<Ry, 2d—-2e<u<2d, (s—R2+6)2-i-(u—Zd—i-e)2 < €}.
Note that wg,  and wg, ¢ are half-balls and let (see Figure 1)
i = [Ri + € Ry — €] X {2d), [re = 0Qre — Zg s
Tre = [Ri+ € Ry — €] X {2d — 2¢}, I == (Owg, e U Owg,,e) N 0QR .
We now consider the following Schrodinger equation

H,z = —i0;z(s,u, 1) — 0,(c, (s, u)0s2(s,u, 1)) — ﬁiz(s, u,t) + V,(s,u)z(s,u,t) = 0,
(s,u,t) € Qre X (0,7),

2(s,u, t) = I(x,y, 1), (s,u) € 0Qge, t € (0,7),

2(s, u, 0) = zo(s, 1), (s,u) € Qge.

3
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Our problem can be stated as follows: Is it possible to determine the curvature y from the
measurement of d,(d,z) on E;;ﬁ"

Let z, depending on € (resp. z, depending on € too) be a solution of (3) associated with
(y,1,z0) (resp. (3,1, 20)). We assume that zj is a real-valued function and that (y —%)(s) # 0
and (y' =9')(s) # 0 for all s € [R}, R,]. Our main result is

||7 _7||L7(Q 5 C‘”a (atz tj”LZ(yr x(=T,T)) + CE,

where C is a positive constant which depends on d, T and where the above norms are weighted
Sobolev norms.

This paper gives a quantum mechanics application of an inverse problem and we use for
that the important tool of Carleman estimates. Indeed, the method of Carleman inequalities
has been introduced in the field of inverse problems by Bukhgeim and Klibanov [2, 3, 11,
12, 13, 14] and constitutes a very efficient tool to derive observability estimates. Note also
that even if the spectral properties of curved quantum guides have been intensively studied for
several years (see [7, 8, 9] e.g.), up to our knowledge there are few results for inverse problems
associated with curved quantum guide (see [4]). The main difficulty here is to recover the
curvature y via two coefficients ¢, and V,. Few results have already been obtained for the
simultaneous identification of two coefficients with one observation and these two coefficients
were not linked up (see [6]). This is not the case here where the coeflicients ¢, and V,, both
depend on y. Another difficulty when we work with Carleman estimates is the existence of
the weight functionﬁ(see Assumption 2). And usually this imposes restrictive conditions for
the diffusion coefficient i.e. in our case for ¢, and therefore for y. This is why, due to these
two difficulties which come from our model (a curved guide with an asymptotically straight
curvature y), we work in the subdomain Qg instead of the whole strip Q; and we get an
additional term Ce in the right hand side of our main result (which was not the case in [5,6]).
This paper is organized as follows: Section 2 is devoted to the Carleman inequality adapted
to our problem. In Section 3 we state and prove our main result.

§2. Carleman inequality

In this section we obtain a Carleman estimate for a function g equal to zero on 0Qg X (=7, T)
and solution of the Schrodinger equation H,q € L*(Qg X (-T,T)). We prove a Carleman
estimate for g with a single observation acting on I'g X (=7, T) in the right-hand side of
the estimate. Note that this estimate is quite similar to the one obtained in [1] or [5] but the
computations are different. Indeed the weight function ,E does not satisfy the same pseudo-
convexity assumptions (see Assumption 2(iii)). This is the main difference compared to [5]
and this is due to the particular form of the operator H, where the diffusion coefficient c,
only appears in the derivatives respect to s.
We use the following notations

] 0,V

where v denotes the unit outward normal to JQg. and we proceed as in [1] or [5]. Let
ﬁ ,B(s u) be a positive function such that there exists positive constants By and C,,. which
satisfy:

c=¢y, VBi= (\/Eo"sﬁ) and v, = (\/Eo"'sv)’
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Assumption 2.
(i) B € C*Qro), and B(s,u) >0 forall (s,u) € Qg..
(ii) VBl > Bo >0 inQpe, and Vf-v. <0 inZg..
(iii) 2Re DXB(E,E) — 1V.c- VLIER + 2V B - ER > Cpelél® forall ¢ = (¢1,6) € C, where

dy(cdf) aiuﬂ)

Dip = [% ducdB) OB @

This assumption imposes restrictive conditions for the choice of the coefficient ¢ = ¢,
and thus for the curvature y in connection with the function g as in [5, 6]. Note that there

exists functions satisfying such conditions. Indeed if we assume that 8(s, u) = B(s) + S2(u),
these conditions can be written in the following form:

A = 20,(cdyB1) — cdscd B — 0ucdufBr + 2¢(DsB1)* > cst > 0 and 2AC — B> > cst > 0,

with B := (1/ V)d,cdsB1 + 2\ B18,8, and C = 8285 + (8,82)*. For example if B(s, u) =
e* + e, these two last conditions become

A =1 —uy(s)°[(2 = c(s, u))2uy’ (s)e* — 2y(s)e"] + 2¢(s, u)(e® + &)
and
2AC — B? = 4c(s, u)[(2 — c(s, W)y’ (s)(1 — uy(s)) e’ (" + )
— ()1 — uy(s)) L (e" + &) + e*e(1 + &* + &)
—y()(1 = uy(s) e (y(s)(1 = uy(s))™" +2¢")].
We have A > cst > 0 and 2AC — B? > cst > 0 for any curvature y in
lyeC'®), ¥ 20, y<0, (1 -2dIyllo) <2, ¥(s) > 26> (1 = 2dllyll) Vs € [Ri, Ral).

Similar restrictive conditions upon the function ¢ in connection with the function 3 have also
been highlighted for the hyperbolic case in [13, 14].

Then we define 8 = 8 + K with K = m||8|l;~q,,) and m > 1. For 4 > 0 we define on
Qg X (=T, T) the functions ¢ and n by

e/lﬁ(s,u) eZ/lK _ e/lﬁ(x,u)

¢(S, u,t) = m and 77(S, u,t) = m

For § > 0 we set ¢ = ¢57q and My := ¢5"H,q. Following [1], we write My — V)i =
My + Moy, with

&)

My = —idpy — Ay — S22V B, (6)
Moy = —iS Ay + 28 A¢V.B - Vb + S oIV B> + S ApyA B, (7N
where
VB = (\gzaﬂsﬁ)’ AB = 05(cOB) + 0o, Ve -Vetb = cOBOY + 0.

Then the following result holds:



An applicationof Carleman inequalitiesfor a curved quantum guide 83

Theorem 3. Let H,, M, M\, M, be the operators defined as above. Assume that Assump-
tions 1 and 2 are satisfied. Then, there exist Ay > 0, So > 0 and a positive constant C
depending on T such that, for any 1 > Ag and any S > S,

_ 3 _ -
s f OIVgPe ™ + 532 f Plle™ + f M STg)P
QR'GX(—T,T) QR'EX(—T,T) QRVGX(—T,T)

" f MaeSTg)P < C f \H, e + €S f Bl0,ql2e "
QrX(=T,T) QRVEX(—T,T) I‘R.ex(—T,T)

for all q satisfying Hy,q € L*(Qge X (=T,T)), g € L*(=T,T; H)(Qg)). d,q = Vq - v, and
avq € Lz(—T, T, LZ(FR,E))'

Proof. We proceed as in [1], [5] or [6]. We have:

f My~ V,uP = f (MR + | May) + 2 Re f MWIhT. ®)
QR\EX(fT,T) QR'EX(fT,T)

Qpex(-T.T)

Multiplying each term of My by each term of M,y (see (6) and (7)), we will calculate under
the following form:

Ref MyMoyy =TI+ Lo+ Lis+ Ly + Do + Iy + I3 + I3 + D )]
QrX(=T,T)
We denote by Q = Qg X (=T, T). We obtain by integrating by parts:
_ . oA N _E Y] 2
Iy =Re | (—i0y)(=iSOmy) = 2 9nlyl. (10)
Qo 0

Since I}, = Re fQ(—i6,¢)2S ApVB-Voy = SAIm fQ POV B-Vay—SAIm fQ POV BV,
integrating by parts in time for the first term and in space for the second term, we get

I = SA*Im fQ OV B + S ATm fQ POYYA B — S ATm fQ AUV B-Vap.  (11)
Moreover, I;; = Re fQ(—ia,z//)[S 2oV B2 + S AgyAB] becomes
I;3 = -SAIm fQ POYYAL — S 2> Tm fQ OV B (12)
and integrating by parts in space we have
by =Re fQ (=A)(=iS b)) = =S ATm fQ SYVB - V. (13)

So from (11)—(13) note that I, + I;3 + I} = —2SA1Im fQ 0,0y V B - V.. Furthermore, I, =
Re fQ(—Acw)2S A9V B - V.. By integrating by parts twice in space we obtain that

Ip =28 4° f ¢IVB - Veyl* + 25 ARe f DBV, Veih)
(0] 0]
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-Sa f ¢1Vcc~vcﬁ| Veoyl* =S A f VLB - v Vel (14)
o € OQrx(~T.T)

-sa f VBRIV - 52 f ALV YT,
[¢] o

with D23 defined by (4). We have also I3 = Re fQ(—Acgb)[S 2oV B + S ApyAB] and, by
integrations by parts twice in space, we obtain:

L =S2 fQ VYA - S fQ oIV BAL — S A2 fQ WIP@V.B - Vo(AB)
SA2 SA2 S
32 f oAV B~ >3 f WPoaB - f WPAAB) (15
0 0 Y

St
A f WPV — S 2 f WPOV.B- Vo(IV.BP) + S f OV BRIVP.
0 (¢ 0
And we obviously have
I; = Re f (=S222P*YIV B (=iS dipp) = 0. (16)
9
Moreover

Iy = Re f (=S* YV B2 A$V.B - Vi
0 (17)

=50 [ SURTL AT VAL + 358 [ ST
Q Q

I = Re f (=S222p* Y|V BPIS 2oV B + S AdwAS]
© (18)
=-S°2 f O WPV BEAL - 324 f &IV B
] (Y]
Therefore, from (10) to (18), (9) becomes
Re [ Mg = -5 [ FuP =54 [ 619, VopNEowP
0 0 o ¢
-28AIm f AUV B - Vop + 28 1° f VBVl
(Y] o
+2SARe f DBV, Vep) — S A f VUV B v,
Y] Qg X(-T.,T)
-sx f PP IVBPAL - S A f PPV B - V(AB) (19)
(@] 0
5/12 2 2 3 2 2
-2 fQ PSP 51 fQ LTS - V. (V5P

SA?

SA
5 f ¢|w|2AC(|Vcﬁ|2)—7 f WPPA(AD)
0 o
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sat 2 4 344 302 4
-5 f PV +25°2 f S WPV
0 0
+ 830 fQ FWEVB - V(Y BP). (20)

Now, if we call by X the terms in (19) which are neglectable with respect to the quatities
SA [, ¢IVeB - Veyl or S3A* [, PPV, we get:

X= —% fQ I nly* - 28 ATm fQ UV B - Voy — S fQ PPV BPAL

S A2 SA
-sa f ¢|w|2vcﬁ-vc(Acﬁ)—7 f ¢|w|2(Acﬁ)2—7 f PP A(AB)
9 0 0

sat
2

RESE f FIWLVB - Vo(VBP).
9

S A2
fQ PPVl - S A fQ ¢|w|2vc/3-vc<|veﬁ|2>—7 fQ Pl PA(V B

So (19) becomes
Re f MMy = X +252° f PIVB- Vol +2SARe f DBV, Vi)
0 ] 0
1
-8a f ¢=Vec VBINcOWI* — S A f VYV B ve
o € QR X(-T.,T)
st f SRV B
(Y]
and there exists a positive constant k such that
1X| < kSA* f Pl +kS34° f HW* +kSA f VB - Vel 1)
] (Y] (Y]
Moreover, from (8), (21) and Assumption 2, we get
1
f (Mg + IMoyl’] + 48 2% f ¢IVB- Vel —282 f ¢=Vec -V BINcoWI*
0 0 o ¢
+4S ARe f DBV, Vo) + 483 2*B; f ¢l (22)
(Y] ]
<Csi f OIVUPYB - ve + CSA* f o + S22 f s
0Qg X(~T,T) 1] o
+CS2 f HIVB -V +C f IMy|* + C f Vol
o (Y] ]

Since V, is bounded on g and since ¢ is a positive continuous function there exists a
positive constant depending upon 7" such that V,, < cst ¢*. Choosing such S and A sufficiently
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large, we deduce that there exists a positive constant C; such that (22) becomes
[ it sty s [ owp vt
Qo Qo
— 1
+SARe f $DB(NV . Vo) + 532 f $ll’ -2 f ¢=Vec - Vol Ved,yl’
0 0 o ¢

<82 f OVUPTB-ve + Cr f My,
TreX(=T.T) o

Finally, we come back to ¢ = e5"y. And this concludes the proof. O

§3. Inverse problem

First, using an idea developed in [10], we prove the following lemma:

Lemma 4. Let 7o be a real function in C*(Qg ) and define the following first order differential
operator Pyg = 0,20059. Let 1y be a real function in CZ(QR,E). Assume that for all (s,u) €
Qre (052005m0)* = cst > 0. Then there exists a positive constant C such that for S sufficiently
large

52 f MR < € f PogPe™ + CS f 25 MIgP1,movs|
Qre Qre

re
foranyg e HI(QR,S).

Proof. Let g € H'(Qg,). Define w = e5™g and Qow = =5 Py(eSw). If we set gy =
05200510, then we get Qow = S gow + Pow. Therefore we have:

f 0ol = f |Pogle ™ = 52 f Rl + f |Powf’ + 25 Re f qowPow
Qpe Qpe Qpe Qpe Qg

> 5? f qolw* + S f 40052005 (Jwl*)
Qpe Qp

€

R WE get

and so, integrating by parts, since vy =0on X} UX

2 =28
f [Pogle™ ="
QR,e

> 5 f R BMIgR + S (- f 3(qodszo)e Mg + f Mg R g0dzovs).
Qre Qp.e T,

€

Since d,(qo0s70) is a bounded function in Qg . and godszovs = (0520)*0movs, We can
conclude. |

Then, we consider y and y two functions satisfying Assumption 1.
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Let z be a solution of

—i0,2(s, u, 1) — D(cy (5, 0)Ds2(s, u, 1)) — 022(s, u, 1) + V, (s, u)z(s, u, 1) = 0,
(S, u, t) € QR,G X (O’ T)s

2(s,u, t) = (s, u,t), (s,u) € 0Qp,, t€(0,T), 23)
2(s,u,0) = zo(s, 1), (s,u) € Qre,
and let Z be a solution of
—i02(s, u, t) — Ox(c5(s, u)0sz(s, u, 1)) — Bﬁf(s, u, 1) + V5(s,u)z(s,u, t) = 0,
(s,u,t) € Qpe X (0,7), (24)

?(S’ u, t) = l(s’ u, t)’ (S, Li) € QQR,Ev re (0’ T)»
2(s,u,0) = zo(s, u), (s,u) € Qpee.

Let Ay = {f € C'([R1,R:]), If'(s)| < N|f(s) and |f(s| < N forall s € [R;,R,]} with N a
positive real given. We obtain the following theorem:

Theorem 5. Lety and’y be functions both satisfying Assumption 1 and such that (y —7y)(s) #
0 and (v =¥ )(s) # 0 for all s € [Ry,Ry]. Assume that § is a function which satisfies
Assumption 2 w.r.t. ¢, with c, defined by (2). Assume also that

(i) zo is a real function such that 7y € CZ(@).
(ii) Forall (s,u) € Q_R,e, (0520(s, wn(s,u, 0))* > cst > 0 (where 1 is defined by (5)).
(iii) OF € L™(Qre X (0,T)), 8,(07) € L Qe X (0,T)), 6207) € L™ Qe X (0,T)),
0,(0,(z—72)) € L®([['¢x(0, T)) and the L™ -norm of each of these functions is less than N.
(iv) y—y€eAyandy —y € Ay.

Then there exists a positive constant C, depending upon N, T, ||Bllr=, 108l such that, for
S and A sufficiently large, we have:

f e BMy(s) = Y(s)* dsdu < C f ¢ BM0,(0,(z =) + Ce.  (25)
L*(Qre)

f X(-T.T)

Note that 0,200, := —Ad,20(e"#/T?) 0,8 satisfies the above hypothesis (ii) for any func-
tion zo such that d,z¢ is a continuous and non null function in Qg (by assuming also that
0, is a non null function in Qg ., which is true for S(s, u) = ¢* + ¢* for example). Note that
since y — 7y is assumed satisfying (y —7y)(s) # 0 and (y/ —¥')(s) # 0 for all s € [R}, R,], then
@ and V’I:Z’ are bounded functions in [Ry, R;] and therefore the previous hypothesis iv)
is verified for some N. Note also that the above hypothesis (iii) is satisfied for any function

7€ C3(Qpre X (0,T)).

Proof. Now, recall that z (resp. Z) is a solution of (23) (resp. (24)). If wesetw = z-7, v =
0w, g=c,—cyand h =V, - V5, we get

—i0,w — d5(c,05w) — 2w + Vyw = 05(gdsZ) — hZ in Qg e X (0, T),

w=0 ondQge X% (0,T),

w(s,u,0) =0, (s,u) € Qge,
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—i0;0 — B5(cyA5v) — 020 + Vo = 05(9d5(0;2)) — hd,Z in Qg e X (0,T),

v=00ndQgex(0,7),

U(S, u, O) = l(as(g(s’ M)asZo(S, M)) - hZ()(S, M))» (S, M) € QR,E~
Asin [1] or [5], we extend the function v on Qg X(—T, T') by the formula v(s, u, t) = v(s, u, —1)
for every (s,u,t) € Qg X (=T,0). Note that this extension is available if the initial data is a
real valued function. Note also that this extension satisfies the previous Carleman estimate.
We set i = e~y with 57 defined by (5). We recall that My = —iday — Ay — 52/12¢2w|VC,8|2
with ¢ = ¢,.

In a first step, we define [ := Im fQR,fX T.0) M. Then by integrations by parts, we

obtain: I = (-1/2) fQR (s, u, 0)?ds du. If we denote by no(s,u) = n(s,u,0) and by
do(s,u) = ¢(s,u,0), recalling that ¢ = e=5"v = e™5"9,w, we get:

r=-1 f e~ 560150 (s, u, 0) ds du. (26)
QR,s

Moreover, we have:

1/2 1/2
1l < s34 ( f |M1w|2) SW( f W)
o 0

S—3/2/l—2
< — ( f M (e S + §3a4° f e-25"|u|2).
2 0 0

Since Hyv = 8,(g9,(0,z)) — ho,z, applying the Carleman inequality, we get:

1| <8327 f e 30,(g0,(0,2)) — hoZ” + €S 127! f pe 2510,0,
(Y]

Crex(=T.T)

with C a positive constant. Since 9,7 € L®(Qg X(0, T)), 95(0;2) € L*(Qrx(0, 7)), 03(6,2) €
L¥(Qge X (0,T)) and e~ 251650 < =251(s0.0) \e have:

1| < CS3%72 f e B[99 + Igl* + |h*] + CS 2! f de M2, (27)
(Y] Trex(=T.T)

with C a positive constant depending on T'. Moreover, from —id,w(s, u, 0) = d4(g0sz0) —hzo =
0590520 +g0*z0 — hzo, applying the Lemma 2 for the function g = ¢y—cyand Pog = 0,200,9 =
—i0;w(s, u,0) — gB?zO + hzp, we obtain:

s? f e BmygP < f | — idw(s, u,0) — gd°z9 + hzo[*e ™ + CS f e~ 25M1g1218,m0vs.
Qre Qre T,

€

And so

52 f MR < € f (19w (s, 1, OF + g + [H21e™ + CS A f ¢ 25MIgP18,Bovs].
Qre Qre Te
(28)



An applicationof Carleman inequalitiesfor a curved quantum guide 89
From (26)—(28) we get:

52 f e BMgR < OS5 f [19gl? +1g + IhP1e 5™ + CS A f e M110,0v,|
Qg Qe T,
+CS712! f pe 50,0 + C f lgl> + AP 1e25™.  (29)
TCreX(=T.T) Qg

Finally note that
0 < estly =yl <lgl < estly =1, 1049l < estlly =y + 1y =¥,

Il < estlly =yl + 1y =¥+ 1y ="l (30)
Combining (29) and (30) we can conclude for S sufficiently large. |

Remark 1. Such result (25) can be generalized on the whole space Q; ( fQ] e Bmly — > <
C fz+x(—r » e 2518,(8,(z — 2)I?) under the condition that there exists a function 8 which
satisfies Assumption 2 on the whole Q;.
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