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NUMERICAL SIMULATION OF
ANISOTHERMAL NEWTONIAN FLOWS

Nelly Barrau and Daniela Capatina

Abstract. We are interested in the finite element approximation of the Navier-Stokes
equations with variable density and with heat transfer. We discuss the choice of compat-
ible discretizations and we investigate the stability of the Jacobian matrix in a simplified
framework. We propose to introduce the mass flux and to use Raviart-Thomas elements
for its discretization, nonconforming elements for the velocity and a DG method for the
temperature. Finally, some numerical tests are presented.
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§1. Introduction

We are interested here in the approximation of 2D anisothermal flows for Newtonian fluids.
The governing equations are the momentum, mass and energy conservation laws together
with the constitutive equation and a state equation, in a polygonal domain Ω ⊂ R2:

ρ

(
∂v
∂t

+ v · ∇v
)
− div τ + ∇p = f,

∂ρ

∂t
+ div(ρv) = 0,

ρCp

(
∂T
∂t

+ v · ∇T
)
− k4T = Q,

ρ = ρ (p,T ) ,
τ = 2ηD(v).

(1)

We close the system by imposing initial and boundary conditions. The unknowns are
the velocity v, the stress tensor τ, the pressure p, the temperature T and the density ρ. The
viscosity η, the thermal conductivity k and the heat capacity Cp are given constants.

This preliminary study is devoted to the development of a stable finite element approxi-
mation of problem (1) and to its implementation in the C++ library Concha. The further goal
is the extension to more complex anisothermal flows, for instance to compressible gases or to
viscoelastic non-Newtonian fluids. Therefore, we propose to keep the density as an unknown
of the problem in order to allow the treatment of different state equations, such as p = ρRT
for a gas or ρ = ρ0 (1 − β (T − T0)) for a polymeric liquid, with R the gas constant, β the
dilatation coefficient and ρ0 , T0 some reference values.
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As regards the constitutive law, it is obvious that in the Newtonian case the stress tensor
can be eliminated from the equations, which is no longer possible when dealing with non-
Newtonian fluids. For instance, for the polymeric liquids which we want to treat in the future
the constitutive law can be usually written as follows:

λ

(
∂

∂t
τ + v · ∇τ − τ∇vT − ∇vτ

)
+ τ + f (τ) = 2ηD(v)

and yields, at constant density and constant temperature, a three-fields formulation in (v, p, τ).
This aspect has been treated in the incompressible isothermal case in [3]. Here, we only focus
on the velocity-pressure formulation for Newtonian fluids.

§2. Choice of compatible discretizations

We present in the sequel some numerical difficulties related to the approximation of (1), as
well as our choice of discretization.

2.1. Incompressible Navier-Stokes equations
We begin by considering the stationary Stokes equations:−η4v + ∇p = f in Ω,

div v = 0 in Ω,
(2)

with homogeneous Dirichlet boundary conditions, for simplicity of presentation.
Its finite element discretization is very well studied in the literature and several methods

exist, each one with its own advantages and disadvantages. Thus, one may employ finite
element spaces for the velocity and the pressure which satisfy an inf-sup condition (see [2] for
a review), or choose the two discrete spaces independently but then add a stabilization term
in order to ensure the uniform coercivity of the matrix. Completely discontinuous discrete
spaces can also be employed, leading to a discontinuous Galerkin (DG) method which is
known to be flexible but quite expensive from a computational point of view.

Among the inf-sup stable spaces, there are the conforming and the nonconforming ap-
proximations. We have chosen to use here low-order nonconforming finite elements either
on triangles or on quadrilaterals, due to their well-known stability and their reduced stencil.
Note that in the triangular case, the mass matrix is diagonal and we recover a divergence free
discrete velocity. These spaces also present certain advantages concerning the adaptivity. We
are using Crouzeix-Raviart [1] elements on triangles, respectively Rannacher-Turek [6] ele-
ments on quadrilaterals, whose degrees of freedom are the mean values across the edges. The
finite dimensional spaces for the velocity are defined as follows:

VCR
h =

{
v ∈ L2(Ω) ; ∀T ∈ Th, v|T ∈ P1, ∀ e ∈ Sh,

∫
e
[v] ds = 0

}
,

VRT
h =

{
v ∈ L2(Ω) ; ∀T ∈ Th, v|T ∈ QT , ∀ e ∈ Sh,

∫
e
[v] ds = 0

}
,
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where QT = (QT )2 with QT = {v ; v◦ΨT ∈ Q̂rot}, Q̂rot = vect{1, x̂, ŷ, x̂2 − ŷ2} and ΨT : T̂ → T
the bilinear one-to-one transformation of the square T̂ = [−1, 1]2. We employ the usual
notation [·] for the jump across en edge e ∈ Sh of the triangulation; the jump is equal to the
trace if e ⊂ ∂Ω. The pressure is looked for in

Mh =
{
p ∈ L2

0(Ω); ∀T ∈ Th, p|T ∈ P0

}
.

As regards now the instationary Navier-Stokes equations, it is well-known that the dis-
cretization of the additionnal nonlinear term v · ∇v is more delicate since it necessitates sta-
bilization. Several schemes such as SUPG, LPS or edge stabilization were proposed in the
literature and are implemented in the library Concha. The approximation of the time deriva-
tive ∂v/∂t is more standard, and several schemes (implicit and explicit Euler, Crank-Nicolson,
BDF) are available in Concha. These aspects will be detailed in the next section, since their
treatment is specific to the change of variables that we propose in the compressible case.

2.2. Compressible Navier-Stokes equations
The density ρ is now an additionnal unknown, and we have to solve the following system :

ρ

(
∂v
∂t

+ v · ∇v
)
− η4v + ∇p = f in Ω,

∂ρ

∂t
+ div(ρv) = 0 in Ω,

ρ = ρ(p) in Ω.

(3)

The numerical treatment of the convective term ρv · ∇v necessitates the design of ade-
quate stabilization techniques, and is still an active and open research topic. To tackle it, we
have chosen here to introduce the mass flux as an auxiliary variable G = ρv belonging to
H (div, Ω). For its discretization, we employ lowest-order Raviart-Thomas finite elements
(see [7]), which are known to be H(div,Ω)-conforming. More precisely, Gh is looked for
in the space Wh = {w ∈ H(div, Ω) ; ∀T ∈ Th, w|T ∈ RT0} where RT0 is defined as follows:
RT0 = P0 ⊕ xP0 on triangles, respectively RT0 = P1[x] × P1[y] on quadrilaterals. The de-
grees of freedom are the normal fluxes across the edges of the triangulation. It is useful to
recall that the interpolation operator Eh of [7] satisfies, besides classical errors estimates, the
following properties on every T ∈ Th and e ∈ Sh respectively:

div (Ehw) = π0 (div w) , Ehw · n = π0(w · n),

where π0 is the L2-orthogonal projection on P0.
We are next interested in the stability of the discrete steady problem. To highlight the

structure of the corresponding operator, let us consider a simple state equation, let’s say
ρ = C p with C constant: 

−η4v + ∇p = f in Ω,

−Cpv + G = 0 in Ω,

div G = 0 in Ω.
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We apply Newton’s method and at each iterate, we obtain the variational formulation:

(vh, Gh, ph) ∈ Vh ×Wh × Mh,

∀v′h ∈ Vh, η

∫
Ωh

∇vh · ∇v′h dx −
∫

Ω

ph div v′h dx =

∫
Ω

f · v′h dx,

∀G′h ∈Wh, −C
∫

Ω

pn
hvh ·G′h dx −C

∫
Ω

phvn
h ·G

′
h dx +

∫
Ω

Gh ·G′h dx = 0,

∀p′h ∈ Mh,

∫
Ω

p′h div Gh dx = 0.

The corresponding Jacobian matrix can be written as follows:

J =


A 0

... B1

A1 I
... B2

. . . . . . . . . . . . . . .

0 B3
... 0


=

A B1

B2 0

 ,

with B1 , B
T
2 and A non-symmetric. In order to show that J is invertible, we shall apply

a generalization of the Babuska-Brezzi theorem which was given by Nicolaides in [5]. We
have then to check three discrete inf-sup conditions on B1, B2 and A respectively, the latter
one on KerB2 × KerB1.

Proposition 1. There exists β1 > 0 independent of h such that

inf
p∈Mh

sup
(v,G)∈Vh×Wh

−
∫

Ω
p div v dx −C

∫
Ω

pvn
h ·G dx

‖p‖0,Ω
(
|v|1,h + ‖G‖H(div,Ω)

) ≥ β1.

Proof. The proof is identical to the one of the classical inf-sup condition for the two-fields
formulation of the Stokes problem on Vh × Mh (see for instance [2]), by taking G = 0. �

Proposition 2. There exists β2 > 0 independent of h such that

inf
p∈Mh

sup
G∈Wh

−
∫

Ω
p div G dx

‖p‖0,Ω ‖G‖H(div,Ω)
≥ β2.

Proof. The proof is well-known, see [7]. For p ∈ Mh, one considers the auxiliary problem:−4z = p in Ω,

z = 0 on ∂Ω,

and takes w = ∇ z which belongs, thanks to the regularity of the Laplace operator, to Ha(Ω)
with a > 1/2. Let then the Raviart-Thomas interpolate G = Ehw. According to the properties
of Eh, one has div G = −p and ‖G‖H(div,Ω) ≤ c ‖p‖0,Ω, which implies the uniform inf-sup
condition on B2. �
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Proposition 3. There exists α > 0 such that:

inf
(v,G)∈KerB2

sup
(v′,G′)∈KerB1

A ((v,G), (v′,G′))
‖(v,G)‖H1

0(Ω)×H(div,Ω) ‖(v′,G′)‖H1
0(Ω)×H(div,Ω)

≥ α,

inf
(v′,G′)∈KerB1

sup
(v,G)∈KerB2

A ((v,G), (v′,G′))
‖(v,G)‖H1

0(Ω)×H(div,Ω) ‖(v′,G′)‖H1
0(Ω)×H(div,Ω)

> 0.

Proof. These two inf-sup conditions translate the fact that the matrix A is invertible on
KerB2 × KerB1. Since A =

(
A 0
A1 I

)
is block triangular, it is therefore sufficient to show the

invertibility of A. Thanks to the discrete Poincaré inequality on the nonconforming spaces, A
is uniformly invertible on the whole space Vh. Thus, the statement is established. �

Let us now discuss the complete system (3). One may choose between two options: write
the particular derivative of the first equation in conservative form ∂G/∂t + div(G ⊗ v), or
keep ρ∂v/∂t + (G · ∇)v. We have chosen here the latter variant. For the discretization of the
convective term, we propose the stabilization:∫
Th

(Gh · ∇)vh · v′h dx ≈ −
∫
Th

(
(div Gh)vh · v′h + (Gh · ∇)v′h · vh

)
dx +

∫
Sh

Fe (Gh, vh) ·
[
v′h

]
ds,

where Fe(Gh, vh) = (Gh · ne)+ vin
h + (Gh · ne)− vex

h represents the numerical flux and ne is a
unit normal to the edge e . For a given piecewise continuous function ϕ, we have denoted
ϕex(x) = limε→0ϕ(x−εne), ϕin(x) = limε→0ϕ(x+εne) and [ϕ] = ϕex−ϕin. Then we end up with
another matrix A∗ =

(
A∗ A2
A1 I

)
instead of A, for which the inf-sup conditions of Proposition 3

should be established. Note that for div Gh = 0, the diffusion-convection operator A∗ is
uniformly coercive on Vh since one can show that

A∗(vh, vh) = η |vh|
2
1,h +

1
2

∫
Sh

|Gh · ne| [vh] · [vh] ds.

For the discretization of the time derivative ρ∂v/∂t, we have employed the BDF (Back-
ward Differential Formula) scheme of order 2, for its robustness and stability. The variable at
tn+1 is expressed in terms of the solutions at the two previous time steps as follows:

ρn+1
∂vn+1

∂t
≈ ρn+1

(
1
4t

(
3
2

vn+1 − 2vn +
1
2

vn−1

)
+ O

(
4t2

))
.

The coercivity of the diagonal blocks corresponding to the velocity and the pressure is thus
enhanced, but the block B1 is also modified and a new inf-sup condition should be satisfied.

2.3. Anisothermal flow
Taking into account the thermodynamics is essential in order to obtain realistic simulations.

The energy equation is convection-dominated due to the large value of the heat capacity
coefficient Cp. We have chosen to employ a DG method for its discretization, which is known
to be well-adapted to such problems (see for instance Lesaint and Raviart [4]). In order
to reduce the computational cost and also because k � 1 while ρCp ≈ 106, we use here
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piecewise constant elements for T . Thus, the discrete diffusion operator on T is reduced to
the stabilization term on the edges while the convective term G ·∇T is approximated similarly
to [4]. The density is approximated by the same finite elements as the temperature.

For the analysis of the corresponding discrete problem, one could apply twice the general
results of [5]. To illustrate this, let us consider for the sake of simplicity the steady case and
let us neglect the convection in the momentum law. Then the governing equations are:

−η4v + ∇p = f,
G − ρv = 0,

−k4T + CpG · ∇T = 0,
ρ + ρ0βT = ρ0 (1 + βT0) ,

div G = 0,

and the Jacobian matrix of the discrete problem in the unknowns (v,G,T, ρ, p) can be written
as follows

J ′ =

A
′ B

′

1

B
′

2 0

 , with: A′ =


A 0 0 0
A1 I 0 B1
0 B2 D 0
0 0 B3 I

 , B
′

1 =


B4
0
0
0

 , B
′

2 =


0
B5
0
0


T

.

The inf-sup conditions on B
′

1 and B
′

2 are the same as in the previous section, so one only
has to check the inf-sup condition forA′ on KerB

′

2 × KerB
′

1 in order to conclude that J ′ is
invertible. For this purpose, one can decomposeA′ in mixed form as follows

A′ =

A
′′ B

′′

1

B
′′

2 C

 ,
where

A′′ =

 A 0 0
A1 I 0
0 B2 D

 , B
′′

1 =

 0
B1
0

 , B
′′

2 =

 0
0
B3


T

, C = I.

Since C is clearly positive definite, we can establish inf-sup conditions for A
′′

, B
′′

1 and
B
′′

2 . Note that the latter is obvious, since B3 corresponds to
∫

Ω
(ρ0β)Tρ dx. Moreover, A being

the nonconforming diffusion operator on v and D the DG diffusion-convection operator on T ,
they are uniformly coercive, so that the block triangular matrixA

′′

is clearly invertible.
In the unsteady case, the time-discretization enforces the coercivity of the diagonal blocks

A and D, but also modifies the bilinear forms B
′

2 and B
′′

1 . Finally, when taking into account
the convective term G · ∇v, the first line ofA

′′

is modified and the matrix is no longer block
triangular; nevertheless, the new diagonal block A is still uniformly coercive.

§3. Numerical experiments

We present some of our first numerical results, carried out on two academic tests. Two dif-
ferent fluids have been considered, a polymer with a high viscosity and a liquid with physical
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(a) t = 60 s (b) t = 90 s (c) t = 120 s

Figure 1: Polymer flow: temperature at different time steps

(a) t = 60 s (b) t = 90 s (c) t = 120 s

Figure 2: Polymer flow: density at different time steps

properties similar to those of water. We have taken into account the gravity force and we have
considered an affine dependence of the density on the temperature, which corresponds to the
case of polymers and which yields the state equation: ρ = ρ0 (1 − β (T − T0)). The next tests
are carried out on quadrilateral meshes. The parameters which are common to the numerical
experiments are given in the table below:

Parameter Value
ρ0: initial density 1000 kg/m3

T0: initial temperature 273 K
β: dilatation coefficient 10−4 m3/kg · K

3.1. Driven cavity: polymer flow
We consider first the driven cavity test in a square Ω. We impose a velocity v = (0.03, 0) m/s
on the top boundary and 0 elsewhere, while the temperature equals 350 K on the top and
273 K elsewhere. The parameters specific to a polymeric liquid are: the heat capacity Cp =

2000 J/kg · K, the thermal conductivity k = 0.05 W/m · K and the viscosity η = 1000 Pa · s.
One can see in Figures 1 and 2 the evolution of the temperature and of the density. The

results of the simulation are physically acceptable. The vortex drags the warm fluid towards
the bottom. Due to the gravity force, this one raises slowly to the top and thus it warms the
fluid situated between the upper edge and the warm convected fluid.
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(a) t = 25 s (b) t = 50 s (c) t = 75 s

Figure 3: Water flow: temperature at different time-steps

(a) t = 25 s (b) t = 50 s (c) t = 75 s

Figure 4: Water flow: density at different time steps

3.2. Driven cavity: water flow

The specific parameters are now: Cp = 4186 J/kg · K, k = 0.6 W/m · K and η = 0.001 Pa · s.
We show in Figures 3 and 4 the temperature and the density (as well as the velocity field) at
different time steps. Since the water has a turbulent flow, the stabilization employed in this
case is not so efficient; we couldn’t simulate a time interval as long as previously.

3.3. Confined flow

The domain is now a rectangle of sides 12 cm and 4 cm. We consider the polymeric liquid
previously described and we impose v = 0 on the whole boundary, a constant temperature
273 K on the top and a temperature depending on time and on the abscissa x on the bottom:
T (x, t) = 273 + 100t + 250x if T < 350 and T (x, t) = 350 otherwise. On the vertical
boundaries, a homogeneous Neumann condition is set for the temperature.

We show in Figures 5 and 6 the first component of the velocity and the density, as well
as the streamlines, at the end of the simulation. Due to the gravity force and to the non-
symmetric boundary condition on the bottom, the heat goes up slowly and generates a veloc-
ity field.
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Figure 5: Confined flow: first component of the velocity at the end of simulation

Figure 6: Confined flow: density at the end of simulation

§4. Conclusion and further developments

The anisothermal Navier-Stokes model set up in this work is a first step towards the numerical
simulation of more complex flows with heat tranfer, by using the library Concha. We have
proposed a finite element method based on the introduction of an additionnal unknown, the
mass flux, and investigated the stability of the Jacobian matrix in a simplified framework. In
perspective, this study should be extended to a more general case. It will also be interesting
to compare this approach with the classical one, written only in the primitive variables.

Although the considered model presents some simplifications (simplified state equation,
absence of viscous dissipation in the energy equation), it contains the main difficulties related
to this type of problem: compressibility, turbulent flow, dominant convection, significant
number of unknowns etc. From a numerical point of view, its treatment necessitated the
enrichment of the library Concha in order to take into account a variable density, as well as
the implementation of a specific stabilization for certain nonlinear convective terms.

The first numerical results are encouraging, and show that the code gives physically ac-
ceptable results. More numerical experiments and comparisons with other softwares such
as PolyFlow R© or OpenFoam should be carried out in order to further validate the code. As
future improvements, we think of using adaptive time steps, iterative solvers and also a local
elimination procedure for the mass flux, which amounts to a different stabilization of ρv · ∇v.
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