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A REMARK ABOUT SYMMETRY OF
SOLUTIONS TO SINGULAR EQUATIONS

AND APPLICATIONS
Kaushik Bal and Jacques Giacomoni

Abstract. In this article we will use the moving plane method to discuss the symmetry
of solution to an elliptic equation with singularity. Moreover by choosing a particular
type of nonlinearity we will show some a priori estimates with the help of moving plane
method.
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§1. Introduction

Suppose that Ω is a bounded domain in Rn. Consider the equation

− ∆u =
1
uδ

+ f (u) in Ω,

u = 0 on ∂Ω, u > 0 in Ω,

where δ > 0 given and f is a locally lipchitz in R. Extensive studies have been done on this
equation in the past by many authors [1], [2], [5], [10], [12] and [13]. This kind of problem
arises in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids as
well as chemical heterogeneous chemical reactions.

In a famous paper [2] it was proved that equations of this kind admits a unique solution
u ∈ C2+α(Ω) ∩C(Ω). Moreover there exists positive constants R and Q s.t

Rp(d(x)) ≤ u(x) ≤ Qp(d(x))

near ∂Ω, where d(x) = dist(x, ∂Ω) and p ∈ C([0, a]) ∩ C2((0, a]) is the local solution of the
problem

−p
′′

= g(p(s)), p(s) > 0, 0 < s < a, p(0) = 0,

where a > 0 and g is a monotone decreasing continuous function.
In another famous paper [7] it was proved by the help of the moving plane method that if

u ∈ C(B) ∩C2(B) is a positive solution of

∆u + f (u) = 0 in B

u = 0 on ∂B

where B is the unit ball and f is a locally lipchitz in R. Then u is radially symmetric in B and
∂u
∂r (x) < 0.
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The original proof requires that solutions be C2 up to the boundary. The main feature
of our paper is to find the symmetry of the solution to the problem with singularity without
any assumptions on the smoothness of the solutions up to the boundary. We also prove the
existence of universal bounds for superlinear and singular problems following the idea of [9].

§2. Main results and preliminaries

Our main result is the following:

Theorem 1. Suppose that Ω is a bounded domain which is convex in x1 direction and sym-
metric with respect to the plane x1 = 0. Suppose u ∈ C2(Ω) ∩C(Ω) is a positive solution of

∆u +
1
uδ

+ f (u) = 0 in Ω

u = 0 on ∂Ω, u > 0 in Ω

where δ > 0 given and f is a locally lipchitz in R. Then u is symmetric w.r.t x1 and Dx1 (x) < 0
for any x ∈ Ω with x1 > 0.

To proof the main theorem we need preliminary which we are going to state now. Let Ω

be a bounded domain in Rn. Consider the operator L in Ω

Lu =

n∑
i, j

ai j(x)Di j(x)u +

n∑
i

bi(x)Diu + c(x)u

for u ∈ C2(Ω) ∩ C(Ω). We assume that ai j, bi and c are continuous in Ω. The coefficient
matrix A = (ai j) is positive definite everywhere in Ω. Likewise, we denote D∗ B

(
det(A)

)1/n

as the geometric mean of the eigenvalues of A.

Definition 1. Define for every u ∈ C2(Ω),

Γ+(u) = {y ∈ Ω; u(x) ≤ u(y) + Du(y).(x − y), x ∈ Ω}.

The set Γ+(u) is called the upper contact set of u and the Hessian matrix (D2u) is nonpositive
on Γ+(u).

Let us state a lemma from [11] (see Lemma 2.24) required to the proof of Alexandroff

Maximum Principle.

Lemma 2. Suppose g ∈ L1
loc(Ω) is nonnegative. Then for any u ∈ C2(Ω) ∩C(Ω), there holds∫

Bk(0)
g ≤

∫
Γ+(u)

g(Du)
∣∣∣det D2u

∣∣∣ ,
where Γ+(u) is the upper contact set of u, Bk(0) is the ball with radius k and center 0 and
k = (1/d)(supΩ u − sup∂Ω u+), where d is the diameter of Ω.

Now we give the Alexandroff Maximum Principle
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Theorem 3. Suppose u ∈ C2(Ω) ∩C(Ω) satisfies Lu ≥ f in Ω with the following conditions

|b|
D∗
,

f
D∗
∈ Ln(Ω) and c ≤ 0 in Ω.

Then there holds

sup
Ω

u ≤ sup
∂Ω

u+ + C
∥∥∥∥∥ f −

D∗

∥∥∥∥∥
Ln(Γ+(u))

,

where C is a constant depend only on n, diam(Ω) and ‖ f −/D‖Ln(Γ+(u)).
Note here that c(x) is assumed to be only measurable and no assumption on the bounded-

ness is required. We are providing the sketch of the proof for the convenience of the reader.

Proof. Without loss of generality we assume u < 0 on ∂Ω. Set Ω+ = {u > 0}. Take g(p) =

(|p|n + µn)−1 and then let µ→ 0+.
Recall the area-formula for Du in Γ+ ∩Ω+ ⊂ Ω gives∫

Du(Γ+∩Ω+)
≤

∫
Γ+∩Ω+

g(Du)
∣∣∣det(D2(u))

∣∣∣ ,
where D2(u) is the Jacobian of the map Du : Ω→ Rn.

First we have,

−ai jDi ju ≤ biDiu + cu − f ,

−ai jDi ju ≤ biDiu − f in Ω+ = {x; u(x) > 0},
−ai jDi ju ≤ |b||Du| + f −.

Then by Cauchy inequality we have,

−ai jDi ju ≤ 2
(
|b|n +

( f −)n

µn

)1/n

.(|Du|n + µn)1/n.

So, by Lemma 2 and recalling that

det(−D2u) ≤
1
D

(
−ai jDi ju

n

)n

on Γ+,

where D = det(A), we have ∫
Bk(0)

g ≤
2n

nn

∫
Γ+∩Ω+

|b|n + µ−n( f −)n

D
.

Now evaluating the integral in the left-hand side we have,∫
Bk(0)

g =
ωn

n
log

(
kn

µn + 1
)
,

where ωn is the volume of the unit ball in Rn. Therefore we obtain

kn ≤ µn
{

exp
{

2n

ωnnn

[∥∥∥∥∥ b
D∗

∥∥∥∥∥n

Ln(Γ+∩Ω+)
+ µ−n

∥∥∥∥∥ f −

D∗

∥∥∥∥∥n

Ln(Γ+∩Ω+)

]}
− 1

}
.

If f . 0 then choose any µ > 0 and then let µ→ 0. This completes the proof. �
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Next we give a statement of Hopf Maximum Principle and a Strong Maximum Principle
adapted to our situation (see [11]). Let us assume the operator L as described above with the
assumption that ai j, bi are continuous and hence bounded in Ω and c(x) is bounded below.

Then we have the following results:

Lemma 4 (Hopf Lemma). Let B an open ball in Rn with x0 ∈ ∂B. Suppose u ∈ C2(B)∩C(B∪
{x0}) satisfies Lu ≥ 0 in B with c(x) ≤ 0 and uniformly bounded in B. Assume in addition that

u(x) < u(x0) for any x ∈ B and u(x0) ≥ 0.

Then for each outward direction ν and an outward normal direction n at x0 with ν.n > 0 there
holds:

lim inf
t→0+

1
t

[u(x0) − u(x0 − tν)] > 0.

Remark 1. If in addition u ∈ C2(Ω) ∩C1(Ω ∪ {x0}) then we have

∂u
∂ν

(x0) > 0.

The proof of Lemma 4 can be found in [11]. From Lemma 4 we can prove the following
strong maximum principle:

Theorem 5 (Strong Maximum Principle). Let Ω be a bounded and connected domain in Rn.
Suppose u ∈ C2(Ω) ∩ C(Ω) satisfies Lu ≥ 0 in Ω with c(x) ≤ 0. Then, the nonnegative
maximum of u can be assumed only on ∂Ω unless u is constant in Ω.

We adapt the proof given in [11].

Proof. Let M be the nonnegative maximum of u in Ω. Set Σ B {x ∈ Ω; u(x) = M}. It is
relatively closed in Ω. We want to show Σ = Ω.

We prove by contradiction. If Σ is a proper set of Ω, then we may find an open ball
B ⊂ Ω \ Σ with a point on its boundary belonging to Σ. (In fact, we may choose a point
p ∈ Ω \ Σ such that d(p,Σ) < d(p, ∂Ω) first and then extend the ball. It hits Σ before hitting
∂Ω). Suppose x0 ∈ ∂B ∩ Σ. Obviously we have Lu ≥ 0 in B and

u(x) < u(x0) for any x ∈ B and u(x0) = M ≥ 0.

Lemma 4 (note that c is bounded in B since by construction, B ⊂ Ω) implies ∂u
∂ν
> 0 where ν

is the outward normal direction at x0 to the ball B. While x0 is the interior maximal point of
Ω, hence Du(x0) = 0. This leads to a contradiction. �

A straightforward consequence of Theorem 5 is the following result:

Corollary 6 (Comparison Principle). Suppose u ∈ C2(Ω) ∩ C(Ω) satisfies Lu ≥ 0 in Ω with
c(x) ≤ 0 in Ω. If u ≤ 0 on ∂Ω, then u ≤ 0 in Ω. In fact, either u < 0 in Ω or u ≡ 0 in Ω.
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§3. Proof of the main result

Write x = (x1, y) ∈ Ω for y ∈ Rn−1. We will prove

u(x1, y) < u(x∗1, y) for any x1 > 0 and x∗1 < x1 with x∗1 + x1 > 0.

Then letting x∗1 → −x1, we get u(x1, y) ≤ u(−x1, y) for any x1. Then by changing the direction
x1 → −x1,we get the symmetry.

We let a = sup x1 for (x1, y) ∈ Ω and for 0 < λ < a, we define

Σλ = {(x1, . . . , xn) ∈ Ω | x1 > λ},

Tλ = {(x1, . . . , xn) ∈ Ω | x1 = λ},

Σ′λ = {(2λ − x1, ..., xn) ∈ Ω | (x1, . . . , xn) ∈ Σλ}.

Notice that Σ′λ is the reflection of Σλ with respect to Tλ. In the following we denote by xλ the
image of x with respect to Tλ.

In Σλ, we define wλ(x) = u(x) − u(xλ) for x ∈ Σλ. Then by Mean Value Theorem we have

∆wλ + c(x, λ)wλ −
δwλ

uδ+1
γ

= 0 in Σλ.

wλ ≤ 0 and wλ , 0 on ∂Σλ.

(1)

where uγ(x) = u(xγ) with xγ is a suitable convex combination of x and xλ and c(x, λ) is a
bounded function in Σλ .

We need to show wλ < 0 in Σλ for any λ ∈ (0, a). We divide the proof in three steps.

Step 1. For any λ close to a, we first show wλ ≤ 0, i.e we can actually start the moving plane.
For λ close to a, we are rearranging (1) as:

∆wλ −
[
c−(x, λ) +

δ

uδ+1
γ

]
wλ = −c+(x, λ)wλ in Σλ,

wλ ≤ 0 and wλ , 0 on ∂Σλ.

Now, since sup∂Σλ
wλ = 0, we have by Theorem 3 that for λ close to a,

sup
Σλ

wλ ≤ C(n, d) ‖c+w+
λ ‖Ln(Σλ),

sup
Σλ

wλ ≤ C(n, d) ‖c+‖L∞(Σλ)|Σλ|
1/n sup

Σλ

wλ ≤
1
2

sup
Σλ

wλ,

where d denotes the diameter of Ω. So we have wλ ≤ 0 for λ close to a.
Applying Corollary 6, we get wλ < 0 in Σλ for λ close to a.
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Step 2. Let (λ0, a) be the largest interval of values of λ such that wλ < 0 in Σλ. We want to
show λ0 = 0. If λ0 > 0 by continuity wλ0 ≤ 0 in Σλ0 and wλ0 , 0 on ∂Σλ0 . Now by Theorem 5
we have wλ < 0 in Σλ0 . We will show that for a small ε > 0 we have wλ0−ε < 0 in Σλ0−ε , thus
getting a contradiction that (λ0, a) is the largest interval of values of λ such that wλ < 0 in Σλ.

Fix θ > 0 (to be determined). Let K be a closed subset in Σλ0 such that |Σλ0−ε \ K| < θ/2.
The fact wλ0 < 0 in Σλ0 implies wλ0 (x) ≤ −p < 0 for any x ∈ K and some p > 0. By continuity
we have wλ0−ε < 0 in K. For ε > 0 small, |Σλ0−ε \ K| < δ.

We choose δ in such a way that we may apply Theorem 3 to wλ0−ε in Σλ0−ε \K. Hence we
get wλ0−ε ≤ 0 in Σλ0−ε \ K.

Therefore we obtain that for any ε > 0 small enough, we have wλ0−ε(x) ≤ 0 in Σλ0−ε .
Again, using corollary 6, we get wλ0−ε(x) < 0 in Σλ0−ε . Therefore, λ0 = 0.

Step 3. We have wλ ≤ 0 for all λ ∈ (0, a). Applying now Corollary 6 and Lemma 4 to the
equation

∆wλ −
[
c−(x, λ) +

δ

uδ+1
γ

]
wλ = c+(x, λ)wλ in Σλ,

wλ ≤ 0 and wλ , 0 on ∂Σλ,

we have wλ < 0 for λ ∈ (0, a).
Note that wλ admits its maximum along Σλ ∩ Ω. Again applying the next part of Lemma 4
we have

Dx1wλ|x1=λ = 2Dx1 uλ|x1=λ < 0.

The proof of Theorem 1 is now complete.

§4. Some a priori estimates

In this section we will produce some a priori results for (1) with the function f being replaced
by a specific type of non-linearity. The equation is given by:

−∆u −
1
uδ

= R(x)uα in Ω,

u = 0 on ∂Ω, u > 0 in Ω,
(2)

where R is continuous and strictly positive function in Ω and 1 < α < n+2
n−2 with δ > 0 is given.

We want to find some a priori estimates on the solutions of the above equation i.e., we
show a uniform bound for the solutions and we achieve that goal with the help of a blow-up
technique in a compact subset of Ω. For the rest of the domain, we apply Theorem 1 for
deriving a uniform bound of solutions in a neighborhood of ∂Ω.

We start by a lemma which is a global result of Liouville type (see [8]).

Lemma 7. Let u(x) be a non-negative C2 solution of

∆u + uα = 0 in Rn (3)

with 1 < α < (n + 2)/(n − 2). Then u(x) ≡ 0.
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Remark 2. Our main result is for f depending only on u but the same thing holds for f (x, u)
with f is a locally lipchitz w.r.t the second variable and continuous w.r.t the first variable.

To prove the result we need few lemmata. First we state here a result of [2].

Lemma 8. Consider the equation given by

−∆u =
1
uδ

in Ω

u = 0 on ∂Ω.

Then there exists unique solution u ∈ C2(Ω) ∩ C(Ω). Moreover we can find 0 < c0 ≤ c1 such
that

1. For 0 < δ < 1, we have c0d(x) ≤ u ≤ c1d(x).

2. For δ = 1, we have c0d(x) ln (A/d(x))1/2 ≤ u ≤ c1d(x) ln (A/d(x))1/2 where A > 1 is
large enough.

3. For δ > 1, we have c0{d(x)}2/(δ+1) ≤ u ≤ c1{d(x)}2/(δ+1).

The above result together with the comparison principle show that any non trivial solution
u to (2) satisfies u(x) ≥ cd(x) with c > 0 independent of u. Next we state a strong comparison
principle (see [6] for the extension in the case of quasilinear elliptic operators):

Lemma 9. Let u, v(≥ 0) ∈ C2(Ω) ∩C(Ω) and satisfies

−∆u − u−δ = f ,

−∆v − v−δ = g,

with u = v = 0 on ∂Ω, 0 < β < 1 with f , g ∈ C(Ω) such that 0 ≤ f ≤ g pointwise everywhere
in Ω and f . g. Then 0 < u < v in Ω.

Now we are ready to proceed to the main result of this section:

Theorem 10. Suppose that Ω is a bounded domain which is strictly convex. Suppose u ∈
C2(Ω) ∩C(Ω) is a positive solution of

−∆u −
1
uδ

= R(x)uα in Ω

u = 0 on ∂Ω.
(4)

where δ > 0, 1 < α < (n + 2)/(n − 2) and R is continuous and strictly positive function in Ω.
Then u(x) < C for some uniform constant C where C only depends α and Ω .

Proof. We are going to divide the domain into two parts given by:

Ωη = {x ∈ Ω | dist(x, ∂Ω) ≥ η},
Ω \Ωη = {x ∈ Ω | dist(x, ∂Ω) < η},

where η > 0 is small enough.
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We proof the theorem by contradiction. Let on the contrary there exists a sequence of
solutions uk(x) of (4) and a sequence of points Pk ∈ Ωη such that Mk = supΩ uk(x) = uk(Pk)→
+∞ as k → +∞.

We first prove that Pk → P ∈ Ωη. For that, we apply the moving plane method as in the
previous section . Applying the method used for the proof of Theorem 1 (see also [3]) and the
convexity of Ω (precisely, we move the hyperplane in a direction close to the outward normal
in a neighborhood of any point of the boundary), we have a H > 0 (depending on the domain
and independent of k) and a T > 0 such that:

uk(x − tγ) is decreasing for t ∈ [0,T ] for γ ∈ Rn satisfying |γ| = 1 and
(γ.n(x)) ≥ H, n(x) is the unit normal to ∂Ω at x and for x ∈ ∂Ω.

The fact that uk(x − tγ) is non-decreasing in t for x, t and γ decribed above we have to
positive numbers α1 and α2 both depending on Ω such that, for any x belonging to Ω \Ωα2 =

{x ∈ Ω | dist(x, ∂Ω) < α2}, we have a measurable set Ix with

• |Ix| ≥ α1,

• Ix ⊂ {x ∈ Ω | dist(x, ∂Ω) ≥ α2/2},

• uk(κ) ≥ uk(x) for all κ in Ix.

Then, multiplying the equation satisfied by uk by the L1-normalised positive eigenfunc-
tion φ1 associated to the first eigenvalue,

λ1(Ω) B inf
u∈H1

0 (Ω), u.0

∫
Ω
|∇u|2∫

Ω
u2

,

we get that

λ1(Ω)
∫

Ω

ukφ1dx =

∫
Ω

φ1

uδk
dx +

∫
Ω

R(x)uαkφ1 dx.

Observing that, for any ` > λ1(Ω), there exists C > 0 such that

1
tδ

+ R(x)tα ≥ `t −C for any t ∈ R+ and uniformly for x ∈ Ω.

Then, fixing ` > λ1(Ω), it follows that

(` − λ1(Ω))
∫

Ω

ukφ1 ≤ C.

Thus, from above, we get for x ∈ Ω \Ωα2

uk(x)
∫

Ix

φ1dx ≤
∫

Ix

ukφ1 ≤ C.

Then, uk(x) ≤ C/|Ix|
1/2 ≤ C/α1 for x ∈ Ω \Ωα2 . Therefore, dist(Mk, ∂Ω) ≥ α2. We now apply

the blow-up analysis of [9].
Let BR(a) denote a ball with radius R and centre a ∈ Rn. Let λk be a sequence of positive

numbers(to be defined later) and y = (x − Pk)/λk. Define the scaled function

vk(y) = λ2/(α−2)
k uk(x).
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We choose λk so that λ2/(α−2)
k Mk = 1. Since Mk → +∞, we have λk → 0 as k → +∞. For

large k, vk(y) is well-defined in Bη/λk (0), and

sup
y∈Bη/λk (0)

vk(y) = vk(0) = 1.

Moreover, vk(y) satisfies in Bη/λk (0) the following equations:

−λ−2α/(α−1)
k ∆uk − λ

2δ/(α−1)
k [vk]−δ = R(λky + Pk)λ−2α/(α−1)

k [vk]α,

−∆vk = λ2(α+δ)/(α−1)
k [vk]−δ + R(λky + Pk)[vk]α.

From Lemma 9, we have uk ≥ c0{d(x)}α, where α depends on δ. Again by Lemma 10 we have
vk ≥ λ

2/(α−2)
k uk. Combining these two results we have vk ≥ p(> 0) in Ωη with p depending

upon η and δ
Therefore given any radius R such that BR(0) ⊂ B η

λk
(0) we can, by elliptic Lp estimates,

find uniform bounds for ‖vk‖W2,p(BR(0)). Choosing p large we obtain by Morrey’s embedding
theorem that ‖vk‖C1,β(BR(0)) for 0 < β < 1 is also uniformly bounded. So for any sequence
k → +∞, there exists a subsequence k j → +∞ such that vk j → v in W2,p ∩ C1,β, p > n on
BR(0). By Holder Continuity v(0) = 1 again since R(λky + Pk) → R(P) as k → +∞, we have
that

−∆v = R(P)vα,
v(0) = 1.

We claim that v is well-defined in all of Rn and vk j → v in W2,p ∩C1,β, p > n on compact
subsets. To show this we consider BR(0) ⊂ B′R(0). Repeating the above argument with
B′R(0), the subsequence vk′j has a convergent subsequence vk′j → v′ on B′R(0), v′ satisfies
λ2/(α−2)

k Mk = 1 and if restricted to BR(0) gives v. By unique continuation, the entire original
sequence converges and v is well defined. By Lemma 4, we have v = 0 in Rn, a contradiction
since v(0) = 1.

This completes the proof. �

The existence of a priori bounds together with the theory of global bifurcation in the
context of singular problems (see [12] and the extension for more singular nonlinearities [4])
can be used to prove existence of multiple solutions. Precisely, let us consider the following
problem where λ ∈ R+ is a parameter:

−∆u = λ

(
1
uδ

+ R(x)uα
)

in Ω,

u = 0 on ∂Ω, u > 0 in Ω.

(5)

In particular, we can prove the following result:

Theorem 11. Let δ ∈ (0, 3) and 1 < α < (n + 2)/(n − 2). Then, there exists an unbounded
connected set C ⊂ R+ ×

(
L∞(Ω) ∩ H1

0(Ω)
)

of solutions (λ, u) to (5) such that

(i) there exists Λ > 0 such that ΠRC = [0,Λ];
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(ii) for any λ ∈ (0,Λ), there exists two solutions (λ, uλ) and (λ, vλ) belonging to C and such
that uλ < vλ in Ω.

The above theorem can be proved by showing that the conected component set of the
minimal solutions curve admits a turning point at λ = Λ and from the existence of universal
bounds at λ > 0 bends back to λ = 0 where the branch admits an asymptotic bifurcation
point.

Acknowledgements

We want to thank Prof. Jesús Hernández for a fruitful discussion of the topic.

References

[1] Coclite, M. M., and Palmieri, G. On a singular nonlinear Dirichlet problem. Comm.
Partial Differential Equations 14, 10 (1989), 1315–1327.

[2] Crandall, M. G., Rabinowitz, P. H., and Tartar, L. On a Dirichlet problem with a
singular nonlinearity. Comm. Partial Differential Equations 2, 2 (1977), 193–222.

[3] de Figueiredo, D. G., Lions, P.-L., andNussbaum, R. D. A priori estimates and existence
of positive solutions of semilinear elliptic equations. J. Math. Pures Appl. (9) 61, 1
(1982), 41–63.

[4] Dhanya, R., Giacomoni, J., Prashanth, S., and Saoudi, K. Global bifurcation and local
multiplicity results for elliptic equations with singular nonlinearity of super exponential
growth in two dimensions. To appear.

[5] Giacomoni, J., and Saoudi, K. Multiplicity of positive solutions for a singular and critical
problem. Nonlinear Anal. 71, 9 (2009), 4060–4077.
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