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Q-RESOLUTIONS
AND INTERSECTION NUMBERS
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Abstract. In this paper we introduce the notion of embedded Q-resolution, which is a
special class of toric resolutions, and explain briefly how to compute it for plane curve
singularities and obtain invariants from them. The main difference with standard resolu-
tions is that we allow both the ambient space and the hypersurface to contain quotient sin-
gularities in some mild conditions. We develop an intersection theory on V-manifolds that
allows us to calculate the intersection numbers of the exceptional divisors of the weighted
blow-ups. An illustrative example is given at the end showing that the intersection matrix
has the expected properties.
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Introduction

In Singularity Theory, resolution is the most important tool. In the embedded case, the start-
ing point is a singular hypersurface; after a sequence of suitable blow-ups this hypersurface
is replaced by a long list of smooth hypersurfaces (the strict transform and the exceptional
divisors) which intersect in the simplest way (at any point we see coordinate hyperplanes
for suitable local coordinates). This process can be very expensive from the computational
point of view and, moreover, only a few amount of the obtained data is used for the under-
standing of the singularity. The experimental work shows that most of these data can be
recovered if we allow some mild singularities to survive in the process (the quotient singu-
larities). These partial resolutions, denoted as Q-resolutions, can be obtained as a sequence
of weighted blow-ups and their computational complexity is extremely lower compared with
standard resolutions. Moreover, the process is optimal in the sense that we do not obtain
useless data. To do this, we develop an intersection theory on varieties with quotient singu-
larities and study weighted blow-ups at points. By using these tools we will be able to get a
big amount of information about the singularity.

The paper is organized as follows. In §1 we give a general presentation of varieties
with quotient singularities and list their basic properties; we introduce the main example, the
weighted projective spaces. In §2 we describe the rational Weil and Cartier divisors on V-
varieties and §3 introduces their intersection numbers. We discuss briefly in §4 the concepts
of weighted blow-ups and embedded Q-resolutions and their relationship with intersection
theory. Finally an example on how to use Q-resolutions to compute intersection numbers is
given. Detailed proofs and further application will appear in a forthcoming work, see [1, 2, 6].
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§1. V-manifolds and quotient singularities

Definition 1. A V-manifold of dimension n is a complex analytic space which admits an
open covering {Ui} such that Ui is analytically isomorphic to Bi/Gi where Bi ⊂ C

n is an open
ball and Gi is a finite subgroup of GL(n,C).

V-manifolds were introduced in [9] and have the same homological properties over Q as
manifolds. For instance, they admit a Poincaré duality if they are compact and carry a pure
Hodge structure if they are compact and Kähler, see [3]. They have been classified locally
by Prill [8]. In this paper special attention is paid to V-manifolds where all groups Gi are
abelian. In particular, the following notation is used.

Let G B µd1 × · · · × µdr be an arbitrary finite abelian group written as a product of finite
cyclic groups, that is, µdi is the cyclic group of di-th roots of unity. Consider a matrix of
weight vectors A B (ai j)i, j = [a1 | · · · | an] ∈ Mat(r × n,Z) and the action

(µd1 × · · · × µdr ) × C
n −→ Cn,(

(ξd1 , . . . , ξdr ), (x1, . . . , xn)
)
7−→ (ξa11

d1
· · · ξar1

dr
x1, . . . , ξ

a1n
d1
· · · ξarn

dr
xn).

Note that the i-th row of the matrix A can be considered modulo di. The set of all orbits Cn/G
is called (cyclic) quotient space of type (d; A) and is denoted by

X(d; A) B X


d1 a11 · · · a1n
...

...
. . .

...
dr ar1 · · · arn

 .
The following result shows that the family of varieties which can locally be written like

X(d, A) is exactly the same as the family of V-manifolds with abelian quotient singularities.

Lemma 1. Let G be a finite abelian subgroup of GL(n,C). Then Cn/G is isomorphic to some
quotient space X(d; A).

We finish this section with one of the classical examples of V-manifold, cf. [4], the
weighted projective spaces.

Let ω = (q0, . . . , qn) be a weight vector, that is, a finite set of positive integers. There is a
natural action of the multiplicative group C∗ on Cn+1 \ {0} given by

(x0, . . . , xn) 7−→ (tq0 x0, . . . , tqn xn).

The set of orbits (Cn+1 \ {0})/C∗ under this action is denoted by Pn
ω and is called the

weighted projective space of type ω. The class of a nonzero element (x0, . . . , xn) ∈ Cn+1 is
denoted by [x0 : . . . : xn]ω and the weight vector is omitted if no ambiguity seems likely to
arise. When (q0, . . . , qn) = (1, . . . , 1) one obtains the usual projective space and the weight
vector is always omitted.

As in the classical case, the weighted projective spaces can be endowed with an analytic
structure. However, in general they contain cyclic quotient singularities. Consider the decom-
position Pn

ω = U0∪· · ·∪Un, where Ui is the open set consisting of all elements [x0 : . . . : xn]ω
with xi , 0. The map

ψ̃0 : Cn −→ U0, ψ̃0(x1, . . . , xn) B [1 : x1 : . . . : xn]ω
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is clearly a surjective analytic map but it is not a chart since injectivity fails. In fact, [1 : x1 :
. . . : xn]ω = [1 : x′1 : . . . , x′n]ω if and only if there exists ξ ∈ µq0 such that x′i = ξqi xi for all
i = 1, . . . , n. Hence the map above induces the isomorphism

ψ0 : X(q0; q1, . . . , qn) −→ U0,

[(x1, . . . , xn)] 7−→ [1 : x1 : . . . : xn]ω.

Analogously, X(qi; q0, . . . , q̂i, . . . , qn) � Ui under the obvious analytic map. Therefore Pn
ω

is an analytic space with cyclic quotient singularities as claimed.

§2. Cartier and Weil divisors on V-manifolds: Q-divisors

Given X a complex analytic surface, the intersection product D · E is well understood when-
ever D is a compact Weil divisor on X and E is a Cartier divisor on X. Over varieties with
quotient singularities the notion of Cartier and Weil divisor coincide after tensoring with Q,
see Theorem 2 below. A rational intersection theory can be defined on this kind of varieties.

Let us start with X an irreducible complex analytic variety. As usual, consider OX the
structure sheaf of X and KX the sheaf of total quotient rings of OX . Denote by K∗X the
(multiplicative) sheaf of invertible elements in KX . Similarly O∗X is the sheaf of invertible
elements in OX .

Definition 2. A Cartier divisor on X is a global section of the sheaf K∗X/O
∗
X , that is, an

element in Γ(X,K∗X/O
∗
X) = H0(X,K∗X/O

∗
X). Any Cartier divisor can be represented by giving

an open covering {Ui}i∈I of X and, for all i ∈ I, an element fi ∈ Γ(Ui,K
∗
X) such that

fi
f j
∈ Γ(Ui ∩ U j,O

∗
X), ∀i, j ∈ I.

Two systems {(Ui, fi)}i∈I and {(V j, g j)} j∈J represent the same Cartier divisor if and only if
on Ui ∩ V j, fi and g j differ by a multiplicative factor in OX(Ui ∩ V j)∗. The abelian group of
Cartier divisors on X is denoted by CaDiv(X). If D B {(Ui, fi)}i∈I and E B {(V j, g j)} j∈J then
D + E = {(Ui ∩ V j, fig j)}i∈I, j∈J .

Definition 3. A Weil divisor on X is a locally finite linear combination with integral coeffi-
cients of irreducible subvarieties of codimension one. The abelian group of Weil divisors on
X is denoted by WeDiv(X).

Let V ⊂ X be an irreducible subvariety of codimension one. It corresponds to a prime
ideal in the ring of sections of any local complex model space meeting V . The local ring of
X along V , denoted by OX,V , is the localization of such ring of sections at the corresponding
prime ideal; it is a one-dimensional local domain. For a given f ∈ OX,V define ordV ( f ) to be
ordV ( f ) B lengthOX,V

(
OX,V/〈 f 〉

)
, where lengthOX,V

denotes the length as an OX,V -module.
Now if D is a Cartier divisor on X, one writes ordV (D) = ordV ( fi) where fi is a local

equation of D on any open set Ui with Ui ∩ V , ∅. This is well defined since fi is uniquely
determined up to multiplication by units and the order function is a homomorphism. Define
the associated Weil divisor of a Cartier divisor D by setting

TX : CaDiv(X) −→WeDiv(X) : D 7−→
∑
V⊂X

ordV (D) · [V],
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where the sum is taken over all codimension one irreducible subvarieties V of X. By the
additivity of the order function, the mapping TX is a homomorphism of abelian groups.

Example 1. Let X be the surface in C3 defined by the equation z2 = xy. The line V = {x =

z = 0} defines a Weil divisor which is not a Cartier divisor. The associated Weil divisor of
{(X, x)} is TX

(
{(X, x)}

)
=

∑
Z⊂XordZ(x) · [Z] = 2[V]. Thus [V] is principal as an element in

WeDiv(X) ⊗Z Q and corresponds to the Q-Cartier divisor 1
2 {(X, x)}.

This fact can be interpreted as follows. First note that identifying our surface X with
X(2; 1, 1) under [(x, y)] 7→ (x2, y2, xy), the previous Weil divisor corresponds to D = {x = 0}.
Although f = x defines a zero set on X(2; 1, 1), it does not induce a function on the quotient
space. However, x2 : X(2; 1, 1) → C is a well-defined function and gives the same zero set
as f . Hence as Q-Cartier divisors one writes D = 1

2 {(X(2; 1, 1), x2)}.

The preceding example illustrates the general behaviour of Cartier and Weil divisors on
V-manifolds as the following result shows.

Theorem 2. Let X be a V-manifold. Then the notion of Cartier and Weil divisor coincide
over Q. More precisely, the linear map

TX ⊗ 1 : CaDiv(X) ⊗Z Q −→WeDiv(X) ⊗Z Q

is an isomorphism of Q-vector spaces. In particular, for a given Weil divisor D on X there
exists k ∈ Z such that kD ∈ CaDiv(X).

Definition 4. Let X be a V-manifold. The vector space of Q-Cartier divisors is identified
under TX with the vector space of Q-Weil divisors. A Q-divisor on X is an element in
CaDiv(X) ⊗Z Q = WeDiv(X) ⊗Z Q. The set of all Q-divisors on X is denoted by Q-Div(X).

The proof of the previous result is constructive. Let us summarize here how to write a
Weil divisor as an element in CaDiv(X) ⊗Z Q where X is an algebraic V-manifold.

1. Write D =
∑

i∈I ai[Vi] ∈ WeDiv(X), where ai ∈ Z and Vi ⊂ X irreducible. Also choose
{U j} j∈J an open covering of X such that U j = B j/G j where B j ⊂ C

n is an open ball and
G j is a small1 finite subgroup of GL(n,C).

2. For each (i, j) ∈ I × J choose a polynomial function fi, j : U j → C satisfying the
condition [( fi, j)x ∈ OB j,x reduced ∀x ∈ B j] and such that Vi ∩ U j = { fi, j = 0}. Then,

[Vi|U j ] =
1
|G j|

{(
U j, f |G j |

i, j

)}
.

3. Identifying {(U j, f |G j |

i, j )} with its image under CaDiv(U j) ↪→ CaDiv(X), one finally
writes D as a sum of locally principal Cartier divisors over Q,

D =
∑

(i, j)∈I×J

ai

|G j|

{(
U j, f |G j |

i, j

)}
.

1A finite subgroup G of GL(n,C) is called small if no element of G has 1 as an eigenvalue of multiplicity
precisely n − 1, that is, G does not contain rotations around hyperplanes other than the identity.
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§3. Rational intersection number on V-surfaces

Now we are going to develop an intersection theory on varieties with quotient singularities,
without getting into technical details.

Definition 5. Let C be an irreducible analytic curve. Given a Weil divisor on C with finite
support, D =

∑r
i=1 ni · [Pi], its degree is defined to be deg(D) =

∑r
i=1 ni ∈ Z. The degree of a

Cartier divisor is the degree of its associated Weil divisor.

Definition 6. Let X be an analytic surface and consider D1 ∈WeDiv(X) and D2 ∈ CaDiv(X).
If D1 is irreducible then the intersection number is defined as D1 · D2 B deg

(
j∗D1

D2

)
∈ Z,

where jD1 : D1 ↪→ X denotes the inclusion and j∗D1
its pull-back functor. The expression

above extends linearly if D1 is a finite sum of irreducible divisors. This number is only well
defined if either D1 * D2 and D1 ∩ D2 is finite, or the divisor D1 is compact, cf. [5, Ch. 2].

In the case D1 * D2, the number (D1 · D2)P B ordP( j∗D1
D2) with P ∈ D1 ∩ D2 is well

defined too and it is called local intersection number at P.

Definition 7. Let X be a V-manifold of dimension 2 and consider D1,D2 ∈ Q-Div(X). The
intersection number is defined as D1 · D2 B (k1k2)−1 (k1D1 · k2D2) ∈ Q, where k1, k2 ∈ Z are
chosen so that k1D1 ∈ WeDiv(X) and k2D2 ∈ CaDiv(X). Analogously, it is defined the local
intersection number at P ∈ D1 ∩ D2, if the condition D1 * D2 is satisfied.

In the following result the main usual properties of the intersection product are collected.
Their proofs are straightforward since they are well known for the classical case (i.e. without
tensoring withQ), cf. [5], and our generalization is based on extending the classical definition
to rational coefficients.

Proposition 3. Let X be a V-manifold of dimension 2 and D1,D2,D3 ∈ Q − Div(X). Then
the local and the global intersection numbers, provided the indicated operations make sense
according to Definition 7, satisfy the following properties: (α ∈ Q, P ∈ X)

1. The intersection product is bilinear over Q.

2. Commutative: If D1 · D2 and D2 · D1 are both defined, then D1 · D2 = D2 · D1.
Analogously (D1 · D2)P = (D2 · D1)P if both local numbers are defined.

3. Non-negative: Assume D1 and D2 are effective, irreducible and distinct. Then D1 · D2
and (D1 · D2)P are greater than or equal to zero. Moreover, (D1 · D2)P = 0 if and only
if P < |D1| ∩ |D2|, and hence D1 · D2 = 0 if and only if |D1| ∩ |D2| = ∅.

4. Non-rational: If D2 ∈ CaDiv(X), D1 ∈ WeDiv(X) then D1 · D2 and (D1 · D2)P are
integral numbers. By the commutative property, the same holds if D1 is a Cartier
divisor and D2 is a Weil divisor.

5. Q-Linear equivalence: Assume D1 has compact support. If D2 and D3 are Q-linearly
equivalent, i.e. [D2] = [D3] ∈ Pic(X) ⊗Z Q, then D1 · D2 = D1 · D3. Due to the
commutativity, the roles of D1 and D2 can be exchanged.

6. Normalization: Let ν : |̃D1| → |D1| be the normalization of the support of D1 and
jD1 : |D1| ↪→ X the inclusion. Then D1 · D2 = deg

(
jD1 ◦ ν

)∗D2. Observe that in this
situation the normalization is a smooth complex analytic curve.
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7. Pull-back: Let Y be another irreducible V-surface and let F : Y → X be a proper
morphism. Given D1,D2 ∈ Q − Div(X), if the intersection product D1 · D2 is defined,
then so is F∗(D1) · F∗(D2) and one has F∗(D1) · F∗(D2) = deg(F)(D · E).

Remark 1. This rational intersection product was first introduced by Mumford for normal
surfaces, see [7, pag. 17]. Our Definition 7 coincides with Mumford’s because it has good
behavior with respect to the pull-back. The main advantage is that ours does not involve
a resolution of the ambient space and, for instance, this allowed us to easily find formulas
for the self-intersection numbers of the exceptional divisors of weighted blow-ups, without
computing any resolution, see Proposition 4 below.

The rest of this section is devoted to reviewing some classical results concerning the
intersection multiplicity.

Classical blow-up at a smooth point. Let X be a smooth analytic surface. Let π : X̂ → X
be the classical blow-up at a (smooth) point P. Consider C and D two Cartier or Weil
divisors on X with multiplicities mC and mD at P. Denote by E the exceptional divisor
of π, and by Ĉ (resp. D̂) the strict transform of C (resp. D). Then there are following
equalities:

1. E · π∗(C) = 0, π∗(C) = Ĉ + mC E, E · Ĉ = mC .
2. E2 = −1, Ĉ · D̂ = C · D − mCmD, D̂2 = D2 − m2

D (when D is compact).

Note that the exceptional divisor has multiplicity 1 at every point. This is why one
only has to subtract 1 for the self-intersection number of the exceptional divisors every
time we blow up a point on them, when computing an embedded resolution on a plane
curve.

Bézout’s Theorem on P2. Every analytic Cartier or Weil divisor on P2 is algebraic and thus
can be written as a difference of two effective divisors. On the other hand, every effec-
tive divisor is defined by a homogeneous polynomial. The degree of an effective divisor
on P2 is the degree, deg(F), of the corresponding homogeneous polynomial. This de-
gree map is extended linearly yielding a group homomorphism deg : Div(P2)→ Z.
Let D1, D2 be two divisors on P2, then D1 · D2 = deg(D1) deg(D2). In particular the
self-intersection number of a divisor D on P2 is D2 = deg(D)2.

The rest of this paper is devoted to generalizing the classical results above to V-manifolds
of dimension 2, weighted blow-ups, and quotient weighted projective planes, respectively.

§4. Weighted blow-ups and embedded Q-resolutions

Classically an embedded resolution of { f = 0} ⊂ Cn is a proper map π : X → (Cn, 0) from a
smooth variety X satisfying, among other conditions, that π−1({ f = 0}) is a normal crossing
divisor. To weaken the condition on the preimage of the singularity we allow the new ambient
space X to contain abelian quotient singularities and the divisor π−1({ f = 0}) to have “normal
crossings” over this kind of varieties. This notion of normal crossing divisor on V-manifolds
was first introduced by Steenbrink in [10].

Definition 8. A hypersurface D on a V-manifold X with abelian quotient singularities is said
to be with Q-normal crossings if it is locally isomorphic to the quotient of a normal crossing
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divisor under a group action of type (d; A). That is, given x ∈ X, there is an isomorphism of
germs (X, x) ' (X(d; A), [0]) such that (D, x) ⊂ (X, x) is identified under this morphism with
a germ of the form

({
[x] ∈ X(d; A) | xm1

1 · · · x
mk
k = 0

}
, [(0, . . . , 0)]

)
.

Definition 9. Let M = Cn+1/G be an abelian quotient space. Consider H ⊂ M an analytic
subvariety of codimension one. An embedded Q-resolution of (H, 0) ⊂ (M, 0) is a proper
analytic map π : X → (M, 0) such that:

1. X is a V-manifold with abelian quotient singularities.

2. π is an isomorphism over X \ π−1(Sing(H)).

3. π−1(H) is a hypersurface with Q-normal crossings on X.

Usually one uses weighted or toric blow-ups with smooth center as a tool for finding
embedded Q-resolutions. Here we only discuss briefly the surface case. Let X be an analytic
surface with abelian quotient singularities. Let us define the weighted blow-up π : X̂ → X at
a point P ∈ X with respect to ω = (p, q). We distinguish two different situations.

(i) The point P is smooth. Assume X = C2 and π = πω : Ĉ2
ω → C2 the weighted blow-up

at the origin with respect to ω = (p, q),

Ĉ2
ω B

{
((x, y), [u : v]ω) ∈ C2 × P1

ω | (x, y) ∈ [u : v]ω
}
.

Here the condition about the closure means that ∃t ∈ C , x = tpu, y = tqv. The new
ambient space is covered as Ĉ2

ω = U1 ∪ U2 = X(p;−1, q) ∪ X(q; p,−1) and the charts
are given by

X(p;−1, q)−→U1, X(q; p,−1)−→U2,

[(x, y)] 7−→ ((xp, xqy), [1 : y]ω); [(x, y)] 7−→ ((xyp, yq), [x : 1]ω).

The exceptional divisor E = π−1
ω (0) is isomorphic to P1

ω which is in turn isomorphic
to P1 under the map [x : y]ω 7→ [xq : yp]. The singular points of Ĉ2

ω are cyclic quotient
singularities located at the exceptional divisor. They actually coincide with the origins
of the two charts.

(ii) The point P is of type (d; a, b). Assume that X = X(d; a, b). The group µd acts also on
Ĉ2
ω and passes to the quotient yielding a map π = π(d;a,b),ω : ̂X(d; a, b)ω → X(d; a, b),

where by definition ̂X(d; a, b)ω B Ĉ2
ω/µd. The new space is covered as

̂X(d; a, b)ω = Û1 ∪ Û2 = X
(

p −1 q
pd a pb − qa

)
∪ X

(
q p −1

qd qa − pb b

)
and the charts are given by

X
(

p −1 q
pd a pb − qa

)
−→ Û1, X

(
q p −1

qd qa − pb b

)
−→ Û2,[

(x, y)
]
7−→

[
((xp, xqy), [1 : y]ω)

]
(d;a,b);

[
(x, y)

]
7−→

[
((xyp, yq), [x : 1]ω)

]
(d;a,b).

The exceptional divisor E = π−1
(d;a,b),ω(0) is identified with P1

ω(d; a, b) B P1
ω/µd. Again

the singular points are cyclic and correspond to the origins of the two charts.
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Proposition 4. Let X be a surface with abelian quotient singularities. Let π : X̂ → X
be the weighted blow-up at a point of type (d; a, b) with respect to ω = (p, q). Assume
(d, a) = (d, b) = (p, q) = 1 and write e = gcd(d, pb − qa).

Consider two Q-divisors C and D on X and, as usual, denote by E the exceptional divisor
of π, and by Ĉ (resp. D̂) the strict transform of C (resp. D). Let ν and µ the (p, q)-multiplicities
of C and D at P, i.e. x (resp. y) has (p, q)-multiplicity p (resp. q). Then there are the following
equalities:

1. E · π∗(C) = 0, π∗(C) = Ĉ +
ν

e
E, E · Ĉ =

eν
pqd

.

2. E2 = −
e2

pqd
, Ĉ · D̂ = C · D −

νµ

pqd
, D̂2 = D2 −

µ2

pqd
(when D is compact).

§5. Bézout’s Theorem for Quotient Weighted Projective Planes

For a given weight vector ω = (p, q, r) ∈ N3 and an action on C3 of type (d; a, b, c), con-
sider the quotient weighted projective plane P2

ω(d; a, b, c) B P2
ω/µd and the corresponding

morphism τ(d;a,b,c),ω : P2 → P2
ω(d; a, b, c) defined by τ(d;a,b,c),ω([x : y : z]) = [xp : yq : zr]ω.

The space P2
ω(d; a, b, c) is a V-manifold with abelian quotient singularities; its charts are

obtained as in Section 1. The degree of a Q-divisor on P2
ω(d; a, b, c) is the degree of its pull-

back under the map τ(d;a,b,c),ω, that is, by definition,

D ∈ Q-Div
(
P2
ω(d; a, b, c)

)
, degω(D) B deg

(
τ∗(d;a,b,c),ω(D)

)
.

Thus if D = {F = 0} is a Q-divisor on P2
ω(d; a, b, c) given by a ω-homogeneous polynomial

that indeed defines a zero set on the quotient projective space, then degω(D) is the classical
degree, denoted by degω(F), of a quasi-homogeneous polynomial.

Proposition 5. Let us denote by m1, m2, m3 the determinants of the three minors of order
2 of the matrix

( p q r
a b c

)
. Assume gcd(p, q, r) = 1 and write e = gcd(d,m1,m2,m3). Then the

intersection number of two Q-divisors, D1 and D2, on P2
ω(d; a, b, c) is

D1 · D2 =
e

dpqr
degω(D1) degω(D2) ∈ Q.

Corollary 6. Let X, Y, Z be the Weil divisors on P2
ω(d; a, b, c) given by {x = 0}, {y = 0} and

{z = 0}, respectively. Using the notation above one has:

X2 =
ep
dqr

, Y2 =
eq

dpr
, Z =

er
dpq

, X · Y =
e
dr
, X · Z =

e
dq
, Y · Z =

e
dp
.

Remark 2. If d = 1, then e equals one too and the formulas become a bit simpler.

§6. Example of an Embedded Q-Resolution

Let us consider the following divisors on C2: C1 = {((x3−y2)2−x4y3) = 0}, C2 = {x3−y2 = 0},
C3 = {x3 + y2 = 0}, C4 = {x = 0} and C5 = {y = 0}. We shall see that the local intersection
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E1(− 1
6 ) E1(− 17

30 )

C4

(3)

C3

C1

C2
(2)

E2(− 1
10 )

(5)(2)

C5

(2) (3)

C2 C3 C4C5

C1

P

π2←−

Figure 1: Embedded Q-resolution of C =
⋃5

i=1 Ci ⊂ C
2.

numbers (Ci · C j)0, i, j ∈ {1, . . . , 5}, i , j, are encoded in the intersection matrix associated
with any embedded Q-resolution of C =

⋃5
i=1 Ci.

Let π1 : C2
(2,3) → C2 be the (2, 3)-weighted blow-up at the origin. The new space has

two cyclic quotient singular points of type (2; 1, 1) and (3; 1, 1) located at the exceptional
divisor E1. The local equation of the total transform in the first chart is given by the function

x29 ((1 − y2)2 − x5y3) (1 − y2) (1 + y2) y : X(2; 1, 1) −→ C,

where x = 0 is the equation of the exceptional divisor and the other factors correspond in the
same order to the strict transform of C1,C2,C3,C5 (denoted again by the same symbol). To
study the strict transform of C4 one needs the second chart, the details are left to the reader.

Hence E1 has multiplicity 29 and self-intersection number −1/6; it intersects transversally
C3, C4 and C5 at three different points, while it intersects C1 and C2 at the same smooth
point P, different from the other three. The local equation of the divisor E1 ∪ C2 ∪ C1 at this
point P is x29 y (x5 − y2) = 0, see Figure 1 below.

Let π2 be the (2, 5)-weighted blow-up at the point P above. The new ambient space has
two singular points of type (2; 1, 1) and (5; 1, 2). The local equations of the total transform of
E1 ∪C2 ∪C1 are given by the following two functions.

1st chart 2nd chart

x73︸︷︷︸
E2

· y︸︷︷︸
C2

· (1 − y2)︸  ︷︷  ︸
C1

: X(2; 1, 1) −→ C x29︸︷︷︸
E1

· y73︸︷︷︸
E2

· (x5 − 1)︸   ︷︷   ︸
C1

: X(2; 1, 1) −→ C

Thus the new exceptional divisor E2 has multiplicity 73 and intersects transversally the
strict transform of C1, C2 and E1. Hence the composition π2◦π1 is an embedded Q-resolution
of C =

⋃5
i=1 Ci ⊂ C

2. As for the self-intersection numbers, E2
2 = −1/10 and E2

1 = −1/6 −
22/(1 · 2 · 5) = −17/30. The following figure illustrates the whole process. The intersection
matrix associated with the embedded Q-resolution obtained is A =

(
−17/30 1/5

1/5 −1/10

)
and B =

−A−1 =
(

6 12
12 34

)
.

Now one observes the intersection number is encoded in B as follows. For i = 1, . . . , 5,
set ki ∈ {1, . . . , 5} such that ∅ , Ci ∩ Eki =: {Pi}. Denote by O(Ci) the order of the cyclic
group acting on Pi. Then, (

Ci ·C j

)
0

=
bki,k j

O(Ci) O(C j)
.
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Looking at the figure one sees that (k1, . . . , k5) = (2, 2, 1, 1, 1) and (O(C1), . . . ,O(C5)) =

(1, 2, 1, 3, 2). Hence, for instance,

(C1 ·C2)0 =
bk1,k2

O(C1) O(C2)
=

b22

1 · 2
=

34
2

= 17,

which is indeed the intersection multiplicity at the origin of C1 and C2. Analogously for the
other indices.
Remark 3. Consider the group action of type (5; 2, 3) on C2. The previous plane curve C is
invariant under this action and then it makes sense to compute an embedded Q-resolution of
C B C/µ5 ⊂ X(5; 2, 3). Similar calculations as in the previous example, lead to a figure as
the one obtained above with the following relevant differences:

• E1 ∩ E2 is a smooth point.

• E1 (resp. E2) has self-intersection number −17/6 (resp. −1/2).

• The intersection matrix is A′ =
(
−17/6 1

1 −1/2

)
and B′ = −(A′)−1 =

(
6/5 12/5
12/5 34/5

)
.

Hence, for instance, (C1 · C2)0 = b′22/(1 · 2) = (34/5)/2 = 17/5, which is exactly the
intersection number of the two curves, since that local number can also be computed as
(C1 ·C2)0 = 5−1(C1 ·C2)0.

Conclusion. The combinatorial and computational complexity of embedded Q-resolutions
is much simpler than the one of the classical embedded resolutions, but they keep as much
information as needed for the comprehension of the topology of the singularity. This will
become clear in the second author’s Ph.D. thesis. We will prove in a forthcoming paper
another advantages of these embedded Q-resolutions, e.g. in the computation of abstract
resolutions of surfaces via Jung method, see [1, 2, 6].
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