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STATISTICAL INFERENCE IN THE
STOCHASTIC GAMMA DIFFUSION

PROCESS WITH EXTERNAL
INFORMATION

R. Gutiérrez, A. Nafidi and R. Gutiérrez Sánchez

Abstract. In this work, we consider a new extension of the one-dimensional stochastic
gamma diffusion process (cf. [11]) by introducing external time functions as exogenous
factors, in the same way as exogenous factors have been introduced into lognormal pro-
cess (cf. [14]), the Gompertz process (cf. [10] ) and the Vasicek process (cf. [12]),
among others. Firstly, we determine the probabilistic characteristics of the process as its
analytical expression, the transition probability density function and the trend functions.
Secondly, we study the statistical inference in this process: the parameters present in
the model are studied by using the maximum likelihood estimation method on the basis
of the discrete sampling, thus obtaining the expression of the likelihood estimators and
their properties (statistical distribution, sufficiency and completeness), together with the
confidence intervals of the parameters.
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§1. Introduction

Stochastic processes are used in fields as diverse as physics, biology, economics and finance
to model and analyze dynamic systems. One particular class of stochastic processes which
has attracted considerable attention is that of diffusion processes. And one of the questions
that has provoked greatest theoretical and practical interest concerning diffusions, and which
has been the object of many studies in recent years, is the problem of establishing the corre-
sponding statistical inference, a question that may be approached by the use of either contin-
uous or discrete sampling. This inference, and in particular the estimation of parameters, has
been studied in the general case by various authors, such as Bibby and Sorensen [3], Prakasa
Rao [17], Ait-Sahalia [1] and Egorov et al. [4], among many others. And in the case of
particular diffusions, it has been considered, for example, by Giovanis et al. [7] in the logistic
case, Gutiérrez et al. [8] in the Gompertz case, Gutiérrez et al. [9] in the Rayleigh case and
Forman et al. [6] in the case of Pearson diffusions, among other important diffusions.

Due to the need to use stochastic diffusions to accurately model real phenomena that are
becoming more and more complex, various extensions of these processes have been consid-
ered, such as non-homogeneous extensions and, in particular non-homogeneous extensions
with exogenous factors, which have been defined, studied and applied, for example, in the
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case of the lognormal process by Gutiérrez et al. [14], in the case of the Gompertz process
by Gutiérrez et al. [10] and Ferrante [5], in the case of the Vasicek process by Gutiérrezet
al. [12], and by Picchini et al. [16] in the case of the Brennan-Schwartz diffusion process,
among others.

In the present study, based on the methodology established for the consideration of ex-
ogenous factors affecting drift , described in [14], [10] and [12], we define a new diffusion
process with external information, modelled by time deterministic functions (exogenous vari-
ables) that affect the drift of the Gamma diffusion process, as studied in [13] and [11]. We go
on to examine a new Gamma diffusion process with exogenous factors, investigating its main
probabilistic characteristics and the corresponding statistical inference.

The remainder of the paper is organised as follows. In the next section, we first define
the model and consider its probabilistic characterisations, such as the explicit expression,
the probability transition density function (ptdf) and the moments (in particular the trend
functions). In the third section, we study the statistical inference in the proposed process
using discrete sampling, obtaining the likelihood estimators, their statistical properties and
the confidence parameter intervals.

§2. The model and its basic probabilistic characteristics

2.1. The proposed model and their analytical expression
The model considered is the one dimensional process {x(t), t ∈ [t1,T ], t1 > 0} with values in
(0,∞) and governed by the following Ito’s stochastic differential equation (SDE)

dx(t) = a(t, x(t))dt + b1/2(t, x(t))dw(t), P[x(t1) = xt1 ] = 1, (1)

where a(t, x) and b(t, x) are given by

a(t, x) =

(
α

t
− h(t)

)
x and b(t, x) = σ2x2.

In the first coefficient a(t, x), the function h is considered as a linear combination of the
exogenous factors, and is given by

h(t) = β0 +

q∑
i=1

βigi(t)

where gi (for i = 1, . . . , q) are called exogenous factors (external information) and are a time-
continuous function in [t1,T ], α, βi (for i = 0, . . . , q) and σ > 0 are time-independent real
parameters (to be estimated).

It can be proved that the functionals a(t, x) and b(t, x) are non-anticipative and satisfy
the Lipschitz and the growth conditions, and consequently that there exists a unique, strong
solution to Eq.(1) [see, for example, Liptser and Shiryayev [15], Theorem 4.6].

Furthermore, it is straightforward to show that these functionals are Borel measurable and
satisfy the uniform Lipschitz condition and the c-Holder, in particular order 1 Holder, condi-
tions (see, for example, Wong and Hajek [19], Propositions 4.1 and 7.1]. Consequently, there
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exists a separable, measurable and almost surely (a.s.) sample continuous diffusion process
{x(t) ; t ∈ [t1,T ]} which is the unique (a.s.) solution to Ito’s SDE Eq.(1) with infinitesimal
moments (drift and diffusion coefficients) given, respectively, by a(t, x) and b(t, x).

2.2. The ptdf and moments of the model
The strong solution to Eq.(1) can be obtained by Ito’s formula, transforming the latter using
the function y(t) = log(x(t)) to the following SDE

dy(t) =

(
α

t
− h(t) −

σ2

2

)
dt + σdw(t); y(t1) = log(xt1 ).

By integrating and substituting, we deduce that the analytical expression of the solution to
the SDE Eq.(1) is

x(t) = xt1

( t
t1

)α
exp

(
−

∫ t

t1

(
h(τ) −

σ2

2

)
dτ + σ(w(t) − w(t1))

)
,

then, x(t) has a one-dimensional lognormal distribution Λ1[µ(t1, t, xt1 ), σ2(t − t1)], where
µ(s, t, x) is given by

µ(s, t, x) = log(x) + α log(t/s) − (β0 + σ2/2)(t − s) −
q∑

i=1

βi

∫ t

s
gi(τ)dτ,

and therefore, the tpdf of the process has the following form

f (y, t | x, s) =
[
2πσ2(t − s)

]−1/2
y−1 exp

− [
log(y) − µ(s, t, x)

]2

2σ2(t − s)

 . (2)

Taking into account that x(t) | x(s) = xs is distributed as Λ1

[
µ(s, t, xs), σ2(t − s)

]
and bearing

in mind the properties of this distribution, the r-th conditional moment of the process is
expressed by

E
[
xr(t)|x(s) = xs

]
= exp

(
rµ(s, t, xs) +

r2σ2

2
(t − s)

)
.

Then, the conditional trend function (r = 1) of the process is

E [x(t) | x(s) = xs] = xs

( t
s

)α
e−β0(t−s)−

∑q
i=1 βi

∫ t
s gi(τ) dτ.

Assuming the initial condition P(x(t1) = x1) = 1, we obtain the trend function of the process

E [x(t)] = xt1

(
t
t1

)α
e−β0(t−t1)−

∑q
i=1 βi

∫ t
t1
gi(τ) dτ

.

And the variance of the process is given by

Var [x(t)] = x2
t1

(
t

1

)2α

e−2β0(t−t1)−2
∑q

i=1 βi
∫ t

t1
gi(τ)dτ (eσ2(t−t1) − 1

)
.
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§3. Statistical inference on the model

3.1. Likelihood parameter estimation
In the present study, with discrete sampling, we estimate the parameters α, σ2 and βi (for
i = 1, . . . , q) of the model by applying maximum likelihood estimation (MLE) methodology.
Let us consider a discrete sampling of the process x1, . . . , xn for times t1, t2, . . . , tn and assume
an initial distribution P [x(t1) = x1] = 1. Then the associated likelihood function can be
obtained from Eq.(2) by the following expression

L(x1, . . . , xn, α, β, σ
2) =

n∏
i=2

f (xi, ti | xi−1, ti−1) .

An implementation based on the change of variable can be used in order to work with a
known likelihood function and to calculate the maximum likelihood estimators in a simpler
way. Consider the following transform: vi = (ti − ti−1)−1/2 (

log(xi) − log(xi−1)
)
, i = 2, . . . , n,

then, with the following reparametrization Γ =
(
α,−(β0 + σ2/2),−β1, . . . ,−βq

)′
and

ui = (ti − ti−1)−1/2
(
log(ti/tt−1), ti − ti−1,

∫ ti−1

ti
g1(τ) dτ, . . . ,

∫ ti−1

ti
gq(τ) dτ

)′
.

Then, the likelihood function for the transformed sample is

Lv2,...,vn (Γ, σ2) =
[
2πσ2

]−(n−1)/2
exp

− 1
2σ2

n∑
i=2

(vi − u′iΓ)2

 .
Let V = (v2, . . . , vn)′ and U be the (q + 2) × (n − 1) matrix, whose rank is q + 2, and given by
U = (u2, . . . ,un). Then, the likelihood function can be rewritten in the following form:

LV(Γ, σ2) =
[
2πσ2

]−(n−1)/2
exp

(
−

1
2σ2 (V − U′Γ)′(V − U′Γ)

)
. (3)

After calculating the derivatives of the log-likelihood function with respect to the parameter
matrix Γ and the coefficient σ2, the likelihood equations are

U(V − U′Γ̂) = 0,

(n − 1)σ̂2 = (V − U′Γ̂)′(V − U′Γ̂).

From which, the likelihood estimators of the parameters are

Γ̂ = (UU′)−1UV,

(n − 1)σ̂2 = V′HUV,

where HU = In−1 − U′(UU′)−1U is an idempotent symmetric matrix.
Remark 1. In the absence of exogenous factors (i.e: gi = 0, for i = 1, . . . , q), we obtain the
stochastic Gamma diffusion process studied in Gutiérrezet al. [11, 13], and it can be shown
that all the results established in the present study generalize those obtained in the two papers
cited.
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3.2. Properties of likelihood estimators
3.2.1. Distribution and independence of MLEs

Using Eq.(3), it can be deduced that V ∼ Nn−1

[
U′Γ, σ2In−1

]
.

The rank of U is q + 2, Then, (UU′)−1U has the same rank, and therefore, we have

Γ̂ ∼ Nq+2

[
Γ, σ2(UU′)−1

]
.

On the one hand, we have σ−1(V − U′Γ) ∼ Nn−1 (0, In−1), as HU is idempotent, then by a
known multivariate analysis result (see for example, [18, Theorem 2, p. 57]), we have

σ−2(V − U′Γ)′HU(V − U′Γ) ∼ χ2
rank(HU).

And by taking into account that HU is symmetric and idempotent, we have rank(HU) =

tr(HU) = n − q − 3, and therefore

σ−2(V − U′Γ)′HUσ
−1(V − U′Γ) = σ−2V′HUV ∼ χ2

n−q−3.

From which, we deduce that
(n − 1)σ̂2

σ2 ∼ χ2
(n−q−3).

On the other hand, as (UU′)−1UHU = 0, then by Theorem 3 in [18, p. 59], we have
(UU′)−1UV and V′HUV are independently distributed, which means that Γ̂ and σ̂2 are in-
dependently distributed.

3.2.2. Sufficiency and Completeness of MLEs

By substracting and adding U′Γ̂ to V − U′Γ, expression Eq.(3) becomes

LV(Γ, σ2) =
1

(2πσ2)
n−1

2

exp
(
−

1
2σ2

[
(n − 1)σ̂2 + (̂Γ − Γ)′UU′ (̂Γ − Γ))

])
.

This shows that
(̂
Γ, σ̂2

)
is conjointly sufficient for

(
Γ, σ2

)
.

The completeness follows by means of similar reasoning to that established for the maxi-
mum likelihood estimators of the parameters of the multivariate normal distribution (see, for
example, Anderson [2]).

Finally it can be deduced that the estimators Γ̂ and (n−1)σ̂2

(n−q−3)σ2 are the UMVUE for the
parameters Γ and σ2 respectively.

3.3. Parameter confidence intervals
On the basis of the above results, it can be deduced that the (1 − γ)% confidence interval for
the parameter σ2 is given, by  (n − 1)σ̂2

χ2
n−q−3, γ2

,
(n − 1)σ̂2

χ2
n−q−3,1− γ

2

 .
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And the (1 − γ)% concentration ellipsoid for Γ∗ =
(
−β1, . . . ,−βq

)′
is given by

(
Γ∗ − Γ̂∗

) [
A(22)

]−1
(
Γ∗ − Γ̂∗

)′
≤

(n − 1)q
n − q − 3

σ̂2Fq,n−q−3,γ,

where χ2
n,γ and Fm,n,γ are the upper 100γ per cent points of the χ2 with n degrees of freedom

and the F- distribution with m and n degrees of freedom, respectively, A(22) is q × q-matrix
and given in

(UU′)−1 =

(
A(11) A(12)
A(21) A(22)

)
.

§4. Conclusions

The Gamma process, from the outset, is a non-homogenenous diffusion process, as its drift
depends explicitly on the time t. In the present paper, we have introduced a new type of
Gamma diffusion, including a second source of non-homogeneneity, which is derived from
making the function h(t), which forms part of the drift of the initial diffusion, depend on
q exogenous factors, g1(t), i = 1, . . . , q. These factors are external (or exogenous) to the
process x(t) itself, and act as “regressors” and thus the drift of the diffusion varies, as do its
trend functions. In consequence, through an appropriate choice of such exogenous factors, it
is possible to fit the Gamma diffusion introduced, and in particular its trend functions, to a
real phenomenon, in a way that is more suitable in statistical terms than if this were done with
the initial Gamma diffusion (without exogenous factors). This is so because, thanks to these
factors, we can model the influence of certain exogenous factors on the dynamic behaviour
of the endogenous variable x(t).

This fit can be applied, in practice, to the Gamma diffusion examined in the present study
because it has been possible to develop the basic results of statistical inference (the estima-
tion and testing of hypotheses) for the model defined in Eq(1).Thus, we have a method for
adjusting, and for analyzing the goodness of fit, that is suitable for practical implementation.
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