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A FRACTAL PROCEDURE FOR THE
COMPUTATION OF MIXED INTERPOLANTS

María Antonia Navascués and María Victoria Sebastián

Abstract. We develop a procedure from the fractal methodology for the computation of
an interpolant born from the cooperation of two functions of different nature. In particular,
we define an Iterated Function System whose attractor is a fractal interpolant to a set of
data with mixing properties. If the maps of the System are chosen in a suitable way, the
approximant constructed is differentiable.
Since the degree of smoothness can be a priori fixed, the methodology described may be
used in order to reduce the regularity of the classical interpolants as polynomial, splines,
etc.
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§1. Introduction

In this paper we propose a procedure for the definition of smooth fractal functions of inter-
polation, whose degree of regularity can be fixed a priori. The function is defined as the
perturbation of a classical mapping with a criterion of proximity to another. In this way,
the approximant constructed comes from the cooperation of two classical elements and the
methodology of iterated funtion systems. After the construction, we give an upper bound of
the uniform error committed on a compact interval.

In a second part we present an application of the procedure to the field of the numerical
integration. In particular we propose a correction to the polynomial quadrature formulae for
partitions with small number of points.

§2. Fractal Functions

In former papers ([4], [5]), we have studied an Iterated Function System {wn(t, x)}Nn=1 defined
on the set C = I × R, where I is a compact interval, I = [a, b] ⊂ R. The maps wn(t, x) are
defined by

wn(t, x) = (Ln(t), Fn(t, x)) ∀ n = 1, 2, ...,N,

where  Ln(t) = ant + bn,

Fn(t, x) = αnx + qn(t).
(1)

The system is associated with a partition of the interval I

∆ : a = t0 < t1 < · · · < tN = b.
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The coefficients an and bn are defined in terms of the nodes of the partition as

an =
tn − tn−1

tN − t0
, bn =

tN tn−1 − t0tn
tN − t0

, (2)

and Fn(t, x) satisfies some Lipschitz conditions ([1]). The multiplier αn is a vertical scale
factor of the transformation, such that −1 < αn < 1. α = (α1, α2, . . . , αN) is the scale vector.

Theorem 1. [1, 2]: The iterated function system (IFS) defined above admits a unique attrac-
tor G. G is the graph of a continuous function h : I → R interpolating the data (h(tn) = xn,
for all n = 0, 1, . . . ,N).

The previous function is called a fractal interpolation function (FIF) corresponding to
{(Ln(t), Fn(t, x))}Nn=1. It satisfies the functional equation:

h(t) = Fn(L−1
n (t), h ◦ L−1

n (t)). (3)

In this paper we study a particular case of a Fractal Interpolation Function (FIF). The
maps qn are defined as

qn(t) = g ◦ Ln(t) − αnb(t), (4)

where g and b are continuous functions, g, b : I → R, such that b(t0) = g(t0), b(tN) = g(tN).
The attractor of the system is the graph of a continuous function gα : I → R which

interpolates to g at the nodes of the partition,

gα(tn) = g(tn) ∀ n = 0, 1, . . . ,N. (5)

The mapping gα satisfies the functional equation (3)

gα(t) = g(t) + αn (gα − b) ◦ L−1
n (t) ∀ t ∈ In. (6)

Let G be the set of continuous functions

G = { f ∈ C[a, b] : f (t0) = g(t0), f (tN) = g(tN)}.

G is a complete metric space with respect to the uniform norm. Define a mapping Tα : G → G
by

(Tα f )(t) = Fn(L−1
n (t), f ◦ L−1

n (t)). (7)

for all t ∈ [tn−1, tn], n = 1, 2, . . . ,N.
Tα is a contraction mapping on the metric space (G, ‖ · ‖∞) and possesses a unique fixed

point on G, that is the FIF gα.
The uniform distance between gα and g is bounded in terms of the scale vector ([6]) and

the map b,

‖gα − g‖∞ ≤
|α|∞

1 − |α|∞
‖g − b‖∞ (8)

where ‖ · ‖∞ is the uniform norm defined as

‖ f ‖∞ = max{| f (t)| : t ∈ I} (9)
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and
|α|∞ = max{|αn| : n = 1, 2, ...,N} (10)

is the contractivity factor of the transformation Tα.
Sufficient conditions for the smoothness of order p of gα are (see the reference [7]):

g, b ∈ Cp(I) and

 g(r)(t0) = b(r)(t0),

g(r)(tN) = b(r)(tN),
r = 0, 1, . . . , p, (11)

|α|∞ <
1

N p ,

αn = cte ∀ n = 1, 2, . . . ,N.

In order to satisfy the condition (11), we can choose as b a Hermite polynomial osculating
g at the extremes of the interval I.

§3. Correction of a classical interpolant with fractal methodology

In this section we present an interpolant born from the cooperation of two approximants of
different nature, first developed in previous works [8, 3]. The fractal function is defined first
as perturbation of one classical. The additional condition of proximity to another interpolant
provides a problem of convex optimization whose solution is a fractal element with mixing
properties.
Theorem 2 (Collage Theorem [2]). Let (X, d) be a complete metric space and let T be a
contraction map on X with contractivity factor c ∈ [0, 1). Then, for any f ∈ X

d( f , f̃ ) ≤
1

1 − c
d( f ,T f ),

where f̃ is the fixed point of T .
We consider two classical interpolants (S and P) of a set of data. We construct the fractal

function Pα associated to P, defined in the previous section (g = P). Now we apply the
collage theorem for X = G, f = S , f̃ = Pα and T = Tα.

The distance here is the uniform metric and T = Tα is the contraction (7), so that
‖TαS − S ‖∞ < ε implies ‖S − Pα‖∞ <

ε
1−|α|∞

and Pα will be a fractal interpolant close to S .
We look for a smooth function, for instance Pα ∈ C1(I), and then we may set the problem

of finding α∗ solving the optimization

min
α
‖TαS − S ‖∞ = min

α
c(α)

where |α|∞ ≤ δ < 1/N, according to the condition 2 for the smoothness of Pα. The map b
must have a contact of first order with P at the extremes of the interval.

The classical interpolants S (polynomial, spline) are piecewise smooth and consequently
by the definition of Tα, TαS −S also is. c(α) is non-differentiable in general, but its convexity
can be proved and thus, the problem

(CP)

 min
α

c(α),

|α|∞ ≤ δ < 1/N,
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is a constrained convex optimization problem. The existence of solution is clear if c is a
continuous function as Bδ = {α ∈ RN : |α|∞ ≤ δ < 1/N} is a compact set of RN . In a previous
paper [8] we proved that c is continuous, and (CP) convex, so that (CP) is a problem of
constrained convex optimization with some solution.

If α∗ is the optimum scale (α∗ = αn, ∀n = 1, 2, . . . ,N), the expression c(α∗)/(1 − |α∗|∞)
provides an upper bound of the uniform distance ‖Pα∗ − S ‖∞ according to the Collage Theo-
rem.

Figures 1 and 2 display a polynomial interpolant P and a cubic spline S (respectively) to
the set of data D = {(0, 1), (1/4, 5), (1/2, 2), (3/4, 4), (1, 3)}. Figure 3 shows the corresponding
fractal Pα∗ defined by the method described. The order of regularity is p = 1. The loss of
smoothness can be observed.

The following result provides an upper bound of the uniform error of the fractal inter-
polant Pα∗ with respect to the original function X.

Theorem 3. If X(t) is the original continuous function providing the interpolation data and
α∗ is the optimum scale, the following error estimate is obtained:

‖X − Pα∗‖∞ ≤ EP +
l4

(N − 1)4!24 ‖P
(4)‖∞, (12)

where EP is an upper bound of the interpolation error corresponding to P, l is the length of
the interval I, N + 1 is the number of points of the partition and b (4) is a Hermite polynomial
with a contact of first order with P at the extremes of the interval.

Proof. It is clear that
‖X − Pα∗‖∞ ≤ ‖X − P‖∞ + ‖P − Pα∗‖∞.

In the reference [7] (expression (2.53) for k = 0 and p = 1) it is proved that

‖P − Pα∗‖∞ ≤
|α∗|

1 − |α∗|
l4

4! 24 ‖P
(4)‖∞.

The inequality |α∗| < 1/N provides the bound proposed. �

§4. Fractal quadrature

The procedure described is applied now for the computation of a numerical integration. Let
us denote M0 the integral of the interpolant Pα∗ on the interval I.

M0 can be computed using the fixed point equation (6)

M0 =

∫
I

Pα∗ (t) dt =

N∑
n=1

∫
In

(
αnPα∗ ◦ L−1

n (t) + qn ◦ L−1
n (t)

)
dt,

that is to say

M0 =

 N∑
n=1

αn

∫
In

Pα∗ ◦ L−1
n (t) dt

 + Q0,
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Figure 1: A polynomial interpolant P

 

Figure 2: A cubic spline S

 

Figure 3: Fractal interpolant Pα∗ computed from the maps of Figures 1 and 2
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where
Q0 =

∫
I

Q(t) dt (13)

and
Q(t) = qn ◦ L−1

n (t) if t ∈ In. (14)

With the change L−1
n (t) = t̃, bearing in mind (1),

M0 =

N∑
n=1

αnanM0 + Q0

and
M0 =

Q0

1 −
∑N

n=1 αnan
.

In this case,
qn(t) = P ◦ Ln(t) − αnb(t)

and thus

Q0 =

∫
I

P(t) dt −
N∑

n=1

αn

∫
In

b ◦ L−1
n (t) dt.

With the same change L−1
n (t) = t̃,

Q0 = C0 − B0 (
N∑

n=1

αnan),

where C0 is the polynomial quadrature

C0 =

∫
I

P(t) dt

and
B0 =

∫
I
b(t) dt.

Since an = 1/N and αn = α∗,
Q0 = (C0 − α

∗B0)

and
M0 =

(C0 − α
∗B0)

(1 − α∗)
.

This formula introduces a slight modification to the quadrature C0 corresponding to P.
Example 1. Let us consider the original function X(t) = 1

1+25t2 in the interval [−1, 1] with the
partition ∆ : −1 < −2

3 < −1
3 < 0 < 1

3 <
2
3 < 1. The value obtained for α∗ in the optimization

method described in the previous section is α∗ = 0.04. The polynomial quadrature gives
C0 = 0.77407, with an error of −0.224729. The correction M0 provided by our procedure is
M0 = 0.45459, obtaining an error of 0.0947702, what improves the sought scalar.

Exact Value C0 Error C0 α∗ M0 Error M0

0.54936 0.77409 -0.224729 0.04 0.45459 0.0947702
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