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SOLVING ONE-DIMENSIONAL LINEAR
BOUNDARY VALUE PROBLEMS BY

MULTI-POINT TAYLOR POLYNOMIALS.
APPLICATIONS TO SPECIAL FUNCTIONS

José Luis López, Ester Pérez Sinusía and Nico M. Temme

Abstract. We consider second order linear differential equations of the form ϕ(x)y′′ +

f (x)y′ + g(x)y = h(x) in a real finite interval I with mixed Dirichlet and Neumann bound-
ary data and a representation of its solution y(x) by a multi-point Taylor expansion. The
number and location of the base points of that expansion are conveniently chosen to guar-
antee that the expansion is uniformly convergent ∀x ∈ I. We propose several algorithms
to approximate the multi-point Taylor polynomials of the solution based on the power
series method for initial value problems. We show that multi-point Taylor polynomials
are adequate to approximate the solution when the singularities of the coefficient func-
tions of the differential equation are close to the interval I. We apply this technique to the
approximation of several special functions.
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§1. Introduction

Let us consider boundary value problems of the formϕ(x)y′′ + f (x)y′ + g(x)y = h(x) in (−1, 1),
MY = N,

(1)

where

M =

(
M11 M12 M13 M14
M21 M22 M23 M33

)
, N =

(
N1
N2

)
, YT =

(
y(−1), y′(−1), y(1), y′(1)

)
,

Mi j and Ni are real numbers and rank(M) = 2. We assume that (1) has a unique solution.
Different methods for approximating the solution of this kind of problems have been

developed in the literature. Among these methods, the Taylor polynomial method is one
of the most used tools. In the last few years, several authors have revisited this method
and proposed new algorithms ([1, 6]). In the case in which it is possible to find a disk of
convergence where the coefficient functions ϕ, f , g and h are analytic, the interval [−1, 1] is
contained inside that disk and ϕ(x) does not vanish in that disk, the basic idea of the method
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proposed by Sezer and Kesan ([1, 6]) is the following. We consider the finite part of the
Taylor expansion of the solution y at x = c:

y(x) ' yn(x) B
n∑

k=0

ak(x − c)k

and equate to zero the Taylor coefficients at x = c of R(x) B ϕ(x)y′′n (x) + f (x)y′n(x) +

g(x)yn(x) − h(x) up to the order n − 2. Thus, we obtain a system of n − 1 linear equations
for the n + 1 unknowns a0, a1, a2, . . . , an. The system is complemented with the two linear
equations MY = N. We obtain then a linear system of n + 1 equations and n + 1 unknowns
a0, a1, a2, . . . , an, whose solution gives an approximation to the Taylor polynomial yn(x), and
then an approximation of the solution y(x) of (1) ([1, 6]).

When [−1, 1] is not included in the disk Dr(c), we can take several points ck (typically
along the interval [−1, 1]) in such a way that [−1, 1] ⊂ ∪kDrk (ck). Then, we use a Taylor ex-
pansion of the solution at every such point x = ck and match these expansions at intersecting
disks Drk (ck) [5, Sec. 7]. In this way, we obtain an approximation of the solution of (1) in the
form of a piecewise polynomial in several subintervals of [−1, 1]. Although this method gives
an analytic approximation to the solution, this approximation is not uniform in the whole in-
terval [−1, 1] because it has a different polynomial representation over different subintervals
[−1, 1] ∩ Drk (ck). Besides this, the coefficients of the Taylor polynomial in every subinterval
are determined by the coefficients of the Taylor polynomial in the adjacent subintervals, and
this matching of expansions translates into numerical errors.

Thus, our purpose in this work is to show that multi-point Taylor polynomials [3, 4] com-
bined with the method proposed in [1, 6] are adequate to approximate the solution of these
equations in the case in which it is not possible to find a disk of convergence containing the
interval of integration. Besides this, we show that this approximation provides a convergent
expansion of the solution uniformly valid in the whole interval.

The paper is organized as follows. Section 2 presents a new method by considering two-
point Taylor expansions instead of the classical Taylor expansion. We illustrate the technique
with different examples. As a straightforward generalization of the two-point Taylor approx-
imation, Section 3 includes an approximation by an n−point Taylor expansion.

§2. A Taylor expansion of the solution at the two extreme points

Let us consider a two-point Taylor expansion of the solution of (1) at the base points x = ±1
([3]):

y(x) =

∞∑
k=0

[ak + bk x](x2 − 1)k, (2)

where the (unique) two-point Taylor coefficients ak and bk are related to the derivatives of y
at x = ±1 ([3]).

We denote the Cassini oval in the complex plane with foci at x = ±1 and Cassini radius r
by Or =

{
z ∈ C | |z2 − 1| = r

}
and the Cassini disk by Dr =

{
z ∈ C | |z2 − 1| < r

}
. When

r > 1, Or is a single oval, when r = 1 it is a lemniscate, and when r < 1 it consists of two
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Figure 1: Graph of the Cassini disk when r > 1.

small ovals around the points ±1. When we assume r > 1, the interval [−1, 1] is lying inside
Dr (see Figure 1).

Suppose that the functions ϕ, f , g and h are analytic in the Cassini disk Dr, r > 1, and
ϕ , 0 inDr. We propose the following algorithm to approximate the unique solution y of (1).
Algorithm 1. The method of Frobenius assures that the unique solution y of (1) is analytic
in the Cassini disk Dr. Then, it is shown in [3] and [4] that y admits a two-point Taylor
expansion of the form (2). From (2) we have

y′(x) =

∞∑
k=0

{[
(2k + 1)bk + 2(k + 1)bk+1

]
+ 2(k + 1)ak+1x

}
(x2 − 1)k,

y′(x) =

∞∑
k=0

{[
(2k + 1)bk + 2(k + 1)bk+1

]
+ 2(k + 1)ak+1x

}
(x2 − 1)k,

y′′(x) =

∞∑
k=0

2(k + 1)
{[

(2k + 1)ak+1 + 2(k + 2)ak+2
]
+

[
(2k + 3)bk+1 + 2(k + 2)bk+2

]
x
}

× (x2 − 1)k.

(3)

Using the above two-point Taylor expansions of y, y′ and y′′, we equate to zero the two-point
Taylor coefficients of R(x) B ϕ(x)y′′ + f (x)y′ + g(x)y− h(x) at x = ±1. We obtain in this way
ak and bk, k = 2, 3, 4, . . . , from a system of two recursions of the form:

ak =

k−1∑
j=0

[αk, ja j + βk, jb j] + γk,

bk =

k−1∑
j=0

[α′k, ja j + β′k, jb j] + γ′k,

k = 2, 3, 4, . . . , (4)

where the coefficients αk, j, βk, j, γk, α′k, j, β
′
k, j, γ

′
k depend on the two-point Taylor coefficients

of ϕ, f , g and h at x = ±1. The computation of the coefficients ak, bk, k = 2, 3, 4, . . . , requires
the initial seed a0, b0, a1 and b1. From these recurrence relations we obtain the two-point
Taylor coefficients ak and bk, k = 2, 3, 4, . . ., of y at x = ±1 as an affine combination of the
four first coefficients a0, b0, a1 and b1. We have ak = Aka0 + Bkb0 + Cka1 + Dkb1 + Ek,

bk = Fka0 + Gkb0 + Hka1 + Ikb1 + Jk,
k = 2, 3, 4, . . . , (5)
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where the coefficients Ak, Bk, . . . , Jk are functions of αk, j, βk, j, γk, α′k, j, β
′
k, j, γ

′
k. The parame-

ters a0, b0, a1 and b1 are linked by the equations MY = N, with

YT = (a0 − b0, b0 + 2b1 − 2a1, a0 + b0, b0 + 2b1 + 2a1). (6)

This means that only two of these four parameters are free; suppose, for example, that a1 and
b1 are free (if we choose another pair of parameters as free parameters we can proceed in a
similar manner). Then, every two-point Taylor coefficient ak and bk, k = 2, 3, 4, . . . , is an
affine combination of only a1 and b1.

Every pair (a1, b1) gives rise to a different function y given by (2)-(5). Formally, all of
these functions y are solutions of (1). But this problem has a unique solution, and then it
must happen that the series (2) is convergent only for one pair (a1, b1), the one that gives rise
to the unique solution of (1). The series (2) must be divergent for any other pair (a1, b1).

The correct values (a1, b1) may be then obtained by imposing the convergence of (2). In
practice, we obtain an approximation (ã1, b̃1) of (a1, b1) by solving the two linear equations
an+1 = bn+1 = 0 (an+1 and bn+1 are affine combinations of a1 and b1). Doing this we are
imposing implicitly that (2) is convergent when we approximate this infinite series by

yn(x) B
n∑

k=0

[ak + bk x](x2 − 1)k. (7)

Once we have obtained the approximation (ã1, b̃1), we obtain from MY = N an approximation
(ã0, b̃0) of (a0, b0) and then, from (5), we obtain the approximations ãk and b̃k, k = 2, 3, 4, . . .
of ak and bk as affine combinations of ã1 and b̃1 and hence, the approximate two-point Taylor
polynomial

ỹn(x) B
n∑

k=0

[ãk + b̃k x](x2 − 1)k. (8)

Algorithm 1 can be reformulated in a more appropriate computational form. For further
information, we refer to [2].

Example 1. Consider the boundary value problem
(
x2 +

1
4

)
y′′(x) + i

[
c − (a + b + 1)

(1
2

+ ix
)]
y′(x) + ab y(x) = 0, x ∈ (−1, 1),

y(−1) = 2F1(a, b; c; 1/2 − i), y(1) = 2F1(a, b; c; 1/2 + i).

We have M11 = M23 = 1 and the remaining Mi j = 0; N1 = 2F1(a, b; c; 1/2 − i), N2 =

2F1(a, b; c; 1/2+ i), ϕ(x) = x2 +1/4, f (x) = i(c−(a+b+1)(1/2+ ix)), g(x) = ab and h(x) = 0.
The unique solution of this problem is the hypergeometric function: y(x) = 2F1(a, b; c; 1/2 +

ix).
The coefficient functions are entire functions, but the function ϕ(x) = (x2 + 1

4 ) vanishes at
x = ±1/2i. Thus, this function is nonvanishing in the Cassini diskDr with foci at x = ±1 for
any 1 < r <

√
5/2.

We have  y(−1) = a0 − b0 = 2F1(a, b; c; 1/2 − i),
y(1) = a0 + b0 = 2F1(a, b; c; 1/2 + i),
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Figure 2: Graph of the real part and the imaginary part of the exact solution 2F1(a, b; c; 1/2 +

ix) (blue) and the approximations ỹn, n = 0, 1, . . . , 7 for a = 1, b = 2 and c = 3.

thus, 
a0 =

2F1(a, b; c; 1/2 + i) + 2F1(a, b; c; 1/2 − i)
2

,

b0 =
2F1(a, b; c; 1/2 + i) − 2F1(a, b; c; 1/2 − i)

2
.

The two-point Taylor expansions of the coefficient functions are finite in this example:

ϕ(x) =

[5
4

+ 0 · x
]

+ [1 + 0 · x] (x2 − 1),

f (x) =

[
i
(
c −

a + b + 1
2

)
+ (a + b + 1)x

]
, g(x) = [ab + 0 · x] ,

and then, the recursions are, for k = 0, 1, 2, . . .,

5(k + 1)(k + 2)ak+2 +
1
2

(k + 1)(4a + 4b + 9 + 18k)ak+1 − i(k + 1)(a + b + 1 − 2c)bk+1

+ (a + 2k)(b + 2k)ak −
i
2

(2k + 1)(a + b + 1 − 2c)bk = 0,

5(k + 1)(k + 2)bk+2 +
1
2

(k + 1)(4a + 4b + 19 + 18k)bk+1 − i(k + 1)(a + b + 1 − 2c)ak+1

+ (1 + a + 2k)(1 + b + 2k)bk = 0,

with a0 and b0 given above and a1 and b1 free.
For several values of n ∈ N, we solve the equations an+1 = bn+1 = 0 for a1 and b1 and ob-

tain the approximate values ã1 and b̃1. From the above recursions and using the exact values
of a0 and b0 and the approximate ã1 and b̃1 we obtain the approximate Taylor polynomial.
Figure 2 shows the approximation ỹn(x) of y(x) for some values of n and a, b and c.

Example 2. As an example of an oscillatory function we consider the boundary value prob-
lem 

[a + b + (b − a)x]2 y′′ + (b − a) [a + b + (b − a)x] y′

+ (b − a)2
[(a + b + (b − a)x

2

)2
− α2

]
y = 0, x ∈ (−1, 1),

y(−1) = Jα(a), y(1) = Jα(b),

(9)
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Figure 3: Plot of the exact solution y(x) = Jα( a+b+(b−a)x
2 ) (thick blue) of (9) and the approxi-

mations ỹ10(x) (red) and ỹ11(x) (magenta) with a = 1, b = 19 and α = 1.

with 0 < a < b. We have M11 = M23 = 1 and the remaining Mi j = 0; N1 = Jα(a), N2 = Jα(b),
ϕ(x) = (a + b + (b− a)x)2, f (x) = (b− a)[a + b + (b− a)x], g(x) = (b− a)2[( a+b+(b−a)x

2 )2 − α2]
and h(x) = 0. We consider the base points ±1. The unique solution of this problem is the
Bessel function: y(x) = Jα( a+b+(b−a)x

2 ).
For several n ∈ N, we seek for an approximation ỹn(x) of the two-point Taylor polynomial

yn(x) of y(x) using Algorithm 1. Figure 3 illustrates the approximation y(x) ' ỹn(x) for some
values of n, a, b and α.

Other examples in which two-point Taylor polynomials may be applied can be found
in [2].

§3. A Taylor expansion of the solution at n points

When the Cassini disk Dr of analyticity of the coefficient functions of (1) with foci x = ±1
does not contain the interval [−1, 1], we may consider an n−point Taylor expansion with
n > 2 (see [4]). When those base points are conveniently chosen, we facilitate the inclusion
of the interval [−1, 1] in the generalized Cassini disk of convergence of the n−point Taylor
expansion.

In general, if the coefficient functions have more singular points P1, P2, P3, . . . , close
to the interval [−1, 1], then we should consider a multi-point Taylor expansion with more
base points such that the region of convergence avoids those singular points and contains
the interval [−1, 1]. When we take more base points for the multi-point Taylor expansion,
we squeeze the convergence region of the expansion avoiding the singular points Pk and
including the interval [−1, 1] in this region [4] (see Figure 4). The generalization of Algorithm
1 from two-point Taylor expansions to the n−point Taylor expansion case is straightforward.
For further information, we refer to [2].

We illustrate the idea for n = 3 with the following example.

Example 3. Consider the boundary value problem
[
1 − (x − ia)2

]
y′′ − 2(x − ia)y′ +

[
ν(ν + 1) −

µ2

1 − (x − ia)2

]
y(x) = 0, x ∈ (−1, 1),

y(−1) = Pµ
ν (−1 − ia), y(1) = Pµ

ν (1 − ia),
(10)
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Figure 4: Typical portrait of the convergence region of a five-point Taylor expansion at the
five base points x = ±1, x = ±1/2 and x = 0.

with 0 < a and Pµ
ν (z) the Legendre function of the second kind with ν, µ ∈ C. The coefficient

functions are entire functions, but the function ϕ(x) = [1 − (x − ia)2] vanishes at x = ±1 − ia.
If a <

(√
5−2

)1/2, we cannot find a Cassini oval with foci at x = ±1 that contains the interval
[−1, 1] and that does not contain the points x = ±1 − ia. Hence, we cannot apply the method
of Section 2. We consider then a three-point Taylor approximation for y with base points
x = ±1 and x = 0 (see [4]) in the form

y(x) =

∞∑
k=0

[ak + bk x + ck x2]xk(x2 − 1)k.

This expansion is convergent in the region (see [4]) Er =
{

z ∈ C | |z(z2 − 1)| < r
}

with r ≤

a
√

a4 + 5a2 + 4, that does not contain the points x = ±1 − ia. Moreover, this region contains
the interval [−1, 1] when r > 2/(3

√
3) (see Figure 5).

Figure 6 shows the approximation for some values of ν, µ and a.

Acknowledgements

J. L. López and E. Pérez Sinusía acknowledge financial support from Dirección General de
Ciencia y Tecnología, project MTM2007-63772 and Instituto de Biocomputación y Física de
Sistemas Complejos de la Universidad de Zaragoza. N.M.Temme acknowledges financial
support from Ministerio de Educación y Ciencia, project MTM2006–09050.

References

[1] Kesan, C. Taylor polynomial solutions of linear differential equations. Appl. Math.
Comp. 142, 1 (2003), 155–165.
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